Modulus of a Complex Number
Trending Questions
Q.
If ω is a complex cube root of unity and if 1, ω and ω2 are the cube roots of unity and , then
Q.
If is defined by , then is equal to
Q. If z=x+iy and |z−ai|=|z+ai|, then the locus of z is
- real axis
- imaginary axis
- x=y
- x2+y2=1
Q.
If is an imaginary cube root of unity and if then one of the value of is
Q. The locus of the centre of a circle which touches the circles |z−z1|=a and |z−z2|=b externally where z, z1, and z2 are complex numbers is
- an ellipse
- a hyperbola
- a circle
- none of these
Q.
If are the cube roots of then equals
Q. The value of sec(sec−15) is
Q. If x+y+z=1, x, y, z>0. Then greatest value of x2y3z4 is
- 2935
- 210315
- 215310
- 210310
Q. If complex number z satisfies |z|+z=2+i, then z is
- z=34+2i
- z=34+i
- z=1+i
- z=35+i
Q. If z=√1+i1−i, then the modulus of z is
- 1
- 2
- √2
- 12
Q.
Both the roots of the equation (x - a) ( x - b) + (x - b) (x - c) + (x - c) (x - a) = 0 are always
Positive
Negative
Real
Imaginary
Q. If z1=(2−i) and z2=(1+i), then ∣∣∣z1+z2+1z1−z2+i∣∣∣ is equal to
- 2√2
- 4√2
- √2
- 8√2
Q.
If iz3+z2−z+i=0, then |z| equals
4
3
2
1
Q. If z=√1+i1−i, then the modulus of z is
- 1
- 2
- √2
- 12
Q. Let z and w be two complex numbers such that |z|≤1, |ω|≤1 and |z+iω|=|z−i¯ω|=2, then z equals
- 1 or i
- i or -i
- 1 or -1
- i or -1
Q. The principal amplitude of (2−i)(1−2i)2 is in the interval :
- (0, π2)
- (−π2, 0)
- (−π, −π2)
- (π2, π)
Q. If z(2−2√3i)2=i(√3+i)4, then arg(z) is
- 5π6
- π6
- −π6
- 2π3
Q. If a=1+i2+i4+⋯+i2n and b=cos−1(∣∣∣11+i∣∣∣), where i=√−1, then the value of tan(ba) is
- 0
- 1
- cannot be determined
- depends on the value of b
Q. If z is a complex number satisfying arg(z+a)=π6 and arg(z−a)=2π3, a∈R+, then
- |z|=a
- |z|=2a
- arg(z)=π2
- arg(z)=π3
Q. If z1=(2−i) and z2=(1+i), then ∣∣∣z1+z2+1z1−z2+i∣∣∣ is equal to
- 2√2
- 4√2
- √2
- 8√2
Q. Given that |z−1|=1, where z is a non zero point on the complex plane, then z−2z is equal to :
- itan(argz)
- icot(argz)
- cot(argz)
- tan(argz)
Q. If z1≠0 and z2 be two complex numbers such that z2z1 is a purely imaginary number, then the value of ∣∣∣2z1+3z22z1−3z2∣∣∣ is
- 1
- 3
- 5
- 2
Q.
If |z|=1 and ω=z−1z+1 (where, z≠−1), then Re (ω) is
0
1|z+1|2
∣∣1z+1∣∣.1|z+1|2
√2|z+1|2
Q. If z is a complex number of unit modulus and argument θ, then arg(1+z1+¯z)=
- π4
- θ
- π2−θ
- 2θ
Q. If z is a complex number of unit modulus and argument θ, then arg(1+z1+¯z)=
- π4
- θ
- π2−θ
- 2θ
Q. The number of integral solutions of the expression |1−i|x=2x is
Q. Given that |z−1|=1, where z is a non zero point on the complex plane, then z−2z is equal to :
- itan(argz)
- icot(argz)
- cot(argz)
- tan(argz)
Q. For the complex number z=3+√−12−√−1, the correct option(s) is/are
- Re(z)=1
- Im(z) =1
- Im(z) =0
- |z|=√2
Q. The expression (x2+y2)4 is equal to
- (x4−2x2y2+y4)2+(4x3y+4xy3)2
- (x4+6x2y2−y4)2+(4x3y−4xy3)2
- (x4−6x2y2+y4)2+(4x3y−4xy3)2
- None of these
Q. If z=32+cosθ+isinθ, then locus of z is
- x2+y2+4x+3=0
- x2+y2+4x−3=0
- x2+y2−4x−3=0
- x2+y2−4x+3=0