Parametric Differentiation
Trending Questions
Q.
If and , then
None of these
Q.
The imaginary part of
None of these
Q. If y=√(a−x)(x−b)−(a−b)tan−1√(a−xx−b), then dydx is equal to
- √(a−x)(x−b)
- 1√(a−x)(x−b)
- √(a−xx−b)
- √(x−ba−x)
Q. If y=√(a−x)(x−b)−(a−b)tan−1√(a−xx−b), then dydx is equal to
- √(a−x)(x−b)
- 1√(a−x)(x−b)
- √(a−xx−b)
- √(x−ba−x)
Q. If x = a cos θ, y=b sin θ, then d3ydx3 is equal to
- (−3ba3)cosec4θ cot4θ
- (3ba3)cosec4θ cotθ
- (−3ba3)cosec4θ cotθ
- None of the above
Q. If x=3tant and y=3sect, then the value of d2ydx2 at t=π4, is :
- 16
- 16√2
- 13√2
- 32√2
Q. A curve is represented parametrically by the equations x=f(t)=aln(bt) and y=g(t)=b−ln(at);a, b>0 and a≠1, b≠1 where t∈R.
Which of the following is not a correct expression for dydx?
Which of the following is not a correct expression for dydx?
- −1f(t)2
- −(g(t))2
- −g(t)f(t)
- −f(t)g(t)
Q. A function is represented parametrically by the equations x=log|2t|, y=∣∣tan−1|t|∣∣, t<0. Then the value of ∣∣
∣∣(1+t2)2[1td2ydx2−(dydx)2]∣∣
∣∣ is
- 0
- 1
- 2
- None of these
Q. If x=secθ−cosθ, y=sec10θ−cos10θ and (x2+4)(dydx)2=k(y2+4), then k is equal to
- 1100
- 1
- 10
- 100
Q. If y=1+t4 and x=3t3+t then what is dydx
- 4t39t2+1
- 9t2+14t3
- 4t3(9t2+1)
- 9t2−4t3
Q. If x=2sinθ−sin2θ and y=2cosθ−cos2θ, θ ∈[0, 2π], then d2ydx2 at θ=π is :
- −38
- 34
- 32
- −34
- None of these
Q. If x=secθ−cosθ, y=sec10θ−cos10θ and (x2+4)(dydx)2=k(y2+4), then k is equal to
- 1100
- 1
- 10
- 100
Q. The value of cos(2cos−1x+sin−1x) when x=15 is
- −√245
- √165
- √245
- −√165