Principal Solution of Trigonometric Equation
Trending Questions
Q. For 0<θ<π2, the solution (s) of
∑6m=1cosec(θ+(m−1)π4)cosec(θ+mπ4)=4√2 is/are
∑6m=1cosec(θ+(m−1)π4)cosec(θ+mπ4)=4√2 is/are
- π4
- π6
- π12
- 5π12
Q. If 0≤x<2π , then the number of real values of x, which satisfy the equation cosx+cos2x+cos3x+cos4x=0, is
- 3
- 5
- 7
- 9
Q. If x−y=13 and cos2(πx)−sin2(πy)=12, then (x, y) can be
- (23, 13)
- (136, 116)
- (76, 56)
- (196, 176)
Q. The general solution of the equation sinx+cosx=32 is
- nπ+π6, n∈Z
- 2nπ+π3, n∈Z
- nπ+π3, n∈Z
- no solution
Q. The number of solution(s) of the equation tanxtan4x=1 for 0<x<π is
- 1
- 2
- 4
- 5
Q.
Trigonometric EquationPrincipal Solutions1. sin x=√32A. 5π62. tan x=−1√3B. 5π123. sec 2x=−2√3C. 7π124. cos 3x=(−12)D. π3E. 2π9F. 4π9G. 11π6H. 2π3
1 - D, 2 - A, 3 - B, 4 - E
1 - D, 2 - G, 3 - B, 4 - F
1 - H, 2 - A, 3 - C, 4 - F
1 - H, 2 - G, 3 - C, 4 - E
Q. Number of solution(s) of the equation cos2x+cosx=sin2x where x∈[0, π] is
Q. The number of values of x in [0, 2π] which satisfy tanx+tan4x+tan7x=tanxtan4xtan7x is
Q. The sum of roots of sin2x−5sinxcosx+2=0, where x∈[0, 2π] is
- 3π2
- 5π2
- 5π2+tan−123
- 5π2+tan−1(125)
Q. Number of solution(s) of the equation ln(2−sin2x)=0 where x∈[0, 10π] is
Q. If log3(2sin2x3)2+1=0, x∈[0, 2π],
then which among the following value(s) of x satisfying the above equation
then which among the following value(s) of x satisfying the above equation
- x=π6
- x=4π3
- x=π3
- x=7π6
Q. One of the principle solution of the equation tan θ=1 is 9π4.
- False
- True
Q.
The set of positive real values of the parameter 'a' for which the equation |sin2x|-|x|-a=0 does not have any real solution is
(3√3+π6, ∞)
(3√3−π6, ∞)
(3√3−π12, ∞)
(3√3+π12, ∞)
Q. If x∈[0, 3π] and r∈R, then the number of pairs of (r, x) satisfying 2sinx=r4−2r2+3 is
- 2
- 3
- 4
- 6
Q. If α, β are the solutions of cotx=−√3 in [0, 2π] and α, γ are the solutions of cosec x=−2 in [0, 2π], then
- α−β=π
- α+γ=3π
- β+γ=2π
- α−γ=π
Q. If α, β are the solutions of sinx=−12 in [0, 2π] and α, γ are the solutions of cosx=−√32 in [0, 2π], then
- α−β=π
- β−γ=π
- α−γ=π
- α+β=3π
Q. If 0≤x≤3π, 0≤y≤3π and cosxsiny=1, then the possible number of values of the ordered pair (x, y) is
- 4
- 5
- 6
- 7
Q. Number of solution(s) of the equation cos2x+cosx=sin2x where x∈[0, π] is