Properties of Argument
Trending Questions
Q.
Let and be two non zero complex numbers such that and , then equals:
Q. If complex numbers z1, z2 are such that |z1|=√2, |z2|=√3 and |z1+z2|=√5−2√3, then the value of |arg(z1)−arg(z2)| is
- 2π3
- π3
- π4
- 3π4
Q. If arg(z)<0, then arg(−z)−arg(z) equals
- π
- −π
- −π2
- π2
Q. If θ1 and θ2 are arguments of two non-zero complex numbers z1 and z2 respectively such that 3|z1|=4|z2|. If z=3z12z2+2z23z1, then
- |z|=√52
- Re(z)=52cos(θ1−θ2)
- |z|=√54
- Re(z)=52cos(θ1+θ2)
Q. If z and ω are two non-zero complex numbers such that |zω|=1 and arg (z)−arg(ω)=π2, then ¯zω is equal to
- 1
- i
- -1
- -i
Q. Let z and ω be complex numbers such that ¯z+i¯ω=0 and arg zω=π. Then arg z equals
- π4
- 5π4
- 3π4
- π2
Q. For two complex numbers z1 and z2;(az1+b¯z1)(cz2+d¯z2)=(cz1+d¯z1)(az2+b¯z2) b≠0, d≠0 if
- ab=cd
- ad=bc
- |z1|=|z2|
- arg(z1)=arg(z2)
Q. If z=(1+i)(1+2i)(1+3i)………(1+ni)(1−i)(2−i)(3−i)………(n−i), where i=√−1, n∈N, then principal argument of z can be -
- 0
- π2
- −π2
- π
Q. If complex numbers z1, z2 are such that |z1|=√2, |z2|=√3 and |z1+z2|=√5−2√3, then the value of |arg(z1)−arg(z2)| is
- 2π3
- π3
- π4
- 3π4
Q. If x=91/3⋅91/9⋅91/27⋯∞;y=41/3⋅4−1/9⋅41/27⋯∞ and z=∞∑r=1(1+i)−r and the principal argument of the complex number p=x+yz is −tan−1√ab, then the value of a2+b2 is (a and b are coprime natural numbers)
Q. Let z and w be two non- zero complex numbers such that |z|=|w| and arg(z)+arg(w)=π. Then the value of (z+¯¯¯¯w)10 is
Q. If arg(z1)=170∘ and arg(z2)=70∘, then the principal argument of z1z2 is
- 120∘
- −120∘
- 240∘
- −240∘
Q. If z=√3+i and w=3i, then arg(zw) and argwz is
- arg(zw)=2π3, arg(wz)=π3
- arg(zw)=2π3, arg(wz)=2π3
- arg(zw)=π3, arg(wz)=π3
- arg(zw)=π3, arg(wz)=π5
Q. If a=cosα+isinα, b=cosβ+isinβ,
c=cosγ+isinγ and ab+bc+ca=1, then
c=cosγ+isinγ and ab+bc+ca=1, then
- cos(α−β)+cos(β−γ)+cos(γ−α)=0
- sin(α−β)+sin(β−γ)+sin(γ−α)=0
- cos(α−β)+cos(β−γ)+cos(γ−α)=1
- sin(α−β)+sin(β−γ)+sin(γ−α)=1
Q. If arg(z1)=170∘ and arg(z2)=70∘, then the principal argument of z1z2 is
- 120∘
- −120∘
- 240∘
- −240∘
Q. If z=(1+i)(1+2i)(1+3i)………(1+ni)(1−i)(2−i)(3−i)………(n−i), where i=√−1, n∈N, then principal argument of z can be -
- 0
- π2
- −π2
- π
Q. For a non-zero complex number z, let arg(z) denote the principal argument with −π<arg(z)≤π. Then which of the following statement(s) is (are) FALSE?
- arg(−1−i)=π4, where i=√−1
- The function f:R→(−π, π], defined by f(t)=arg(−1+it) for all t∈R, is continuous at all points of R, where i=√−1
- For any two non-zero complex numbers z1 and z2, arg(z1z2)−arg(z1)+arg(z2) is an integer multiple of 2π.
- For any three given distinct complex numbers z1, z2 and z3, the locus of the point z satisfying the condition arg((z−z1)(z2−z3)(z−z3)(z2−z1))=π,
lies on a straight line.
Q. Let z and ω be complex numbers such that ¯z+i¯ω=0 and arg zω=π. Then arg z equals
- π4
- 5π4
- 3π4
- π2
Q. Let z1 and z2be nth roots of unity which subtend a right angle at the origin, then n must be of the form (where, k is an integer)
- 4k+1
- 4k+2
- 4k+3
- 4k