Properties of Cube Root of a Complex Number
Trending Questions
Q. Let Z be the set of integers. If
A={x∈Z:2(x+2)(x2−5x+6)=1} and B={x∈Z:−3<2x−1<9}, then the number of subsets of the set A×B, is :
A={x∈Z:2(x+2)(x2−5x+6)=1} and B={x∈Z:−3<2x−1<9}, then the number of subsets of the set A×B, is :
- 210
- 212
- 218
- 215
Q. If α, β be the roots of the equation u2−2u+2=0 and if cotθ=x+1, then (x+α)n−(x+β)n(α−β) is equal to
- sinnθsinnθ
- cosnθcosnθ
- sinnθcosnθ
- cosnθsinnθ
Q. If the four roots of the equation z4+z3+2z2+z+1=0 form a quadrilateral on the Argand plane, then the area of the quadrilateral is
- √3+28
- √3+24
- √3+22
- √3+23
Q. If i=√−1, then 4+5(−12+√32i)334+3(−12+√32i)365 is equal to
- 1−i√3
- −1+i√3
- i√3
- −i√3
Q. The value of (1+cosθ+isinθ)n+(1+cosθ−isinθ)n is
- 2n.cosnθ2.cosnθ2
- 2n+1.cosnθ2.cosθ2
- 2n+1.cosnθ2.cosnθ2
- 2n.cosnθ2.cosθ2
Q. If 1, ω, ω2 are the cube roots of unity, then their product is
[Karnataka CET 1999, 2001]
[Karnataka CET 1999, 2001]
- \N
- ω
- -1
- 1
Q. Let ω be a complex number such that 2ω+1=z where z=√−3. If ∣∣
∣
∣∣1111−ω2−1ω21ω2ω7∣∣
∣
∣∣=3k, then k is equal to:
- −z
- z
- −1
- 1
Q. If 1, ω, ω2 are the cube roots of unity, then their product is
[Karnataka CET 1999, 2001]
[Karnataka CET 1999, 2001]
- \N
- ω
- -1
- 1
Q. The value of the expression 1⋅(2−ω)(2−ω2)+2⋅(3−ω)(3−ω2)+....+(n−1)⋅(n−ω)(n−ω2), where ω is an imaginary cube root of unity is
- {n(n+1)2}2
- {n(n+1)2}2−n
- {n(n+1)2}2+n
- None of the above
Q. If ω is a complex cube root of unity, then (1 + ω)(1 + ω2) (1+ω4) (1+ω8)... to 2n factors =
[AMU 2000]
[AMU 2000]
- \N
- 1
- -1
- None of these
Q. If n is an integer and
(1+i√3)n+(1−i√3)n=2n+1cosθ, then θ is equal to
(1+i√3)n+(1−i√3)n=2n+1cosθ, then θ is equal to
- nπ3
- nπ2
- nπ4
- nπ6
Q. If i=√−1, then 4+5(−12+√32i)334+3(−12+√32i)365 is equal to
- 1−i√3
- −1+i√3
- i√3
- −i√3