Properties of Modulus
Trending Questions
Q. Let z1, z2, z3 be three complex numbers such that |z1|=|z2|=|z3|=1 and z21z2z3+z22z1z3+z23z1z2=−1. Then the possible value(s) of |z1+z2+z3| is/are
- 0
- 1
- 2
- 3
Q.
Let be a function whose domain is . Let . Then what is the domain of .
None of these
Q.
If , then is equal to
Q.
Let and be sets. Then:
Q. If z1=5+12i and |z2|=4, then
- Maximum value of |z1+iz2| is 17
- Minimum value of |z1+(1+i)z2| is 13−4√2
- Minimum value of ∣∣ ∣ ∣ ∣∣z1z2+4z2∣∣ ∣ ∣ ∣∣ is 134
- Maximum value of ∣∣ ∣ ∣ ∣∣z1z2+4z2∣∣ ∣ ∣ ∣∣ is 133
Q.
If , the maximum value of , for all is
Q. If z1 and z2 are any two complex numbers, then ∣∣∣z1+√z21−z22∣∣∣+∣∣∣z1−√z21−z22∣∣∣ is equal to
- |z1|
- |z2|
- |z1+z2|
- |z1+z2|+|z1−z2|
Q. If f1(x)=xx−1 and fn(x)=f1(fn−1(x)) for n≥2, then the integral value of x that satisfies f101(x)=3x is
Q.
Write the value of
Q. Let z1, z2, z3 be three complex numbers such that |z1|=|z2|=|z3|=1 and z21z2z3+z22z1z3+z23z1z2=−1. Then the possible value(s) of |z1+z2+z3| is/are
- 0
- 1
- 2
- 3
Q. If z and w be two complex numbers such that |z|≤1, |w|≤1 and |z+iw|=|z−i ¯¯¯¯w|=2, then
- |z|=|w|=12
- |z|=12, |w|=34
- |z|=|w|=34
- |z|=|w|=1
Q. Number of turning points for the modulus function given as
is
is
Q. If Z is a complex number such that |z| greater than or equal to 2, then the minimum value of ∣∣z+12∣∣.
25
32
52
Less than 23
Q. Let xn, yn, zn, wn denote nth terms of four different arithmetic progressions with positive terms. If x4+y4+z4+w4=8 and x10+y10+z10+w10=20 then the maximum value of x20⋅y20⋅z20⋅w20 is
- 108
- 104
- 106
- 1010
Q. Let z1 be a complex root of the equation anzn+an−1zn−1+⋯+a1z+a0=3 (|z|<1), where |ai|<2 for i=0, 1, 2, …, n. Then
- 13<|z1|<1
- |z1|<13
- 12<|z1|<1
- |z1|<12
Q. If |Z1+Z2| = |Z1|+|Z2|, then find the value of arg (Z1Z2)
π3
π4
π
0
Q.
If z is a complex number, then the minimum value of |z|+|z-1| is
1
0
12
None of these
Q. If z1 and z2 are complex numbers and u=√z1z2, then ∣∣∣z1+z22+u∣∣∣+∣∣∣z1+z22−u∣∣∣ is equal to
- |z1|−|z2|
- |z1|2+|z2|2
- 0
- |z1|+|z2|
Q. Let complex numbers α and 1¯α lie on circles (x−x0)2+(y−y0)2=r2 and (x−x0)2+(y−y0)2=4r2, respectively.
If z0=x0+iy0 satisfies the equation 2|z0|2=r2+2, then |α| is equal to
If z0=x0+iy0 satisfies the equation 2|z0|2=r2+2, then |α| is equal to
- 1√2
- 12
- 1√7
- 13
Q. If |z1|=1, |z2|=2, |z3|=3 and |9z1z2+4z1z3+z2z3|=12, then the value of |z1+z2+z3| is
- 1
- 2
- 3
- 4
Q. If −3 and |5−4p| have the same absolute value and the sum of all possible values of p is k, then the value of 2k is
Q. The distance of the roots of the equation |sinθ1|z3+|sinθ2|z2+|sinθ3|z+|sinθ4|=3, from z=0 is
- greater than 23
- less than 23
- greater than |sinθ1|+|sinθ2|+|sinθ3|+|sinθ4|
- less than |sinθ1|+|sinθ2|+|sinθ3|+|sinθ4|
Q. If z1=24+7i and |z2|=6 then |z1+z2| lies in
- [12, 25]
- [19, 31]
- [6, 25]
- [13, 37]
Q. If z and w be two complex numbers such that |z|≤1, |w|≤1 and |z+iw|=|z−i ¯¯¯¯w|=2, then
- |z|=|w|=12
- |z|=12, |w|=34
- |z|=|w|=34
- |z|=|w|=1
Q. If f:R→R, g:R→R, h:R→R be three functions given by f(x)=x2−1, g(x)=√x2+1, h(x)={0, x≤0x, x>0 then (hofog)(x)=
- {x2+1, x>0x2−1, x≤0
- {x2+1, x>00, x≤0
- ⎧⎨⎩−x2, x<00, x=0x2x>0
- {x2, x≠00, x=0
Q. For any complex number z, the minimum value of |z|+|z−3i| is
Q. Let z be a complex number such that |z|=z+32−24i. Then Re(z)+Im(z) is equal to
- 17
- 31
- 25
- −17
Q. If z and w be two complex numbers such that |z|≤1, |w|≤1 and |z+iw|=|z−i¯¯¯¯w|=2, then
- number of solutions for z is 1
- number of solutions for z is 2
- number of solutions for w is 1
- number of solutions for w is 2
Q. For any two complex numbers z1 and z2, if |z1|=2 and |z2|=3, then the value of |3z1+2z2|2+|3z1−2z2|2 is
Q. Let a, b∈R and a2+b2≠0. Suppose S={z∈C:z=1a+ibt, t∈R, t≠0}, where i=√−1. If z=x+iy and z∈S, then (x, y) lies on
- the circle with radius 12a and centre (12a, 0)for a>0, b≠0
- the circle with radius −12a and centre (−12a, 0)for a<0, b≠0
- the x-axis for a≠0, b=0
- the y-axis for a=0, b≠0