Property 3
Trending Questions
Q. Let f(x) be a differentiable function defined on [0, 2] such that f′(x)=f′(2−x) for all x∈(0, 2), f(0)=1 and f(2)=e2. Then the value of 2∫0f(x)dx is
- 1+e2
- 1−e2
- 2(1−e2)
- 2(1+e2)
Q. If I=3π∫0[tanx]dx, where [.] represents the greatest integer function, then the value of ∣∣∣2Iπ∣∣∣ is
Q. Find the integral ∞∫0e−xdx.
- 0
- 1
- 2
- ∞
Q.
where
None of these
Q. The value of ∫20 (x2] dx is equal to
- 5−√2−√3
- 5+√2+√3
- 5+√2−√3
- 5−√2+√3
Q. If 1/2∫1/8[ln[1x]]dx is equal to ab, where a and b are coprime, then the value of b−4a is
([.] denotes the greatest integer function)
([.] denotes the greatest integer function)
Q. ∫∞11x2dx does not have a finite value
- False
- True