Property 5
Trending Questions
Q. Let ∫x0(bt cos 4t−a sin 4tt2)dt=a sin 4xx, then a and b can be
- 14, 1
- 2, 2
- -1, 4
- 2, 4
Q. If f(x)=∫x1dt2+t4, then
- f(2)<13
- f(2)>13
- f(2)13
- f(2)>1
Q. If f(x)=∫x0(1+t3)−12 and g (x) is the inverse of f, then the value of g"(x)g2(x) is
- 32
- 23
- 13
- 12
Q. If f(x) is a differentiable function and ∫x30t2f(t)dt=313x13+5 then f(827)
- 827
- 1627
- 1681
- 89
Q. The value of the integral π∫0|sin2x| dx is
Q. If f(x) can be written as f(x)=∫x−11ey2dy then which of the following is true about f(x)?
- f(x) is monotonically increasing in the interval [0, 1]
- f(x) is strictly increasing in the interval [0, 1]
- f(x) is monotonically increasing for all real values of x.
- f(x) is strictly increasing for all real values of x.
Q. If ∫x0 f(t)dt=x+∫1x tf(t) dt, then the value of f (1) is
- 12
- 0
- 1
- −12
Q. The value of limx→0∫x20sec2t dtx sin x is
- 3
- 2
- 1
- -1
Q. ∫2a0 f(x) dx=∫a0( f(a−x)+f(a+x)} dx
- True
- False
Q. Let f:(0, ∞) and F(x)=∫x1f(t).If F(x2)=x2(1+x) then f(4) equals
- 54
- 7
- 4
- 2
Q. For x ϵ (0, 5π2), define f(x)=∫x0√tsin t dt. Then f has
- local minimum at π and 2 π
- local minimum at π and local maximum at 2π
- local maximum at π and local minimum at 2π
- local maximum at π and 2π
Q.
If f(x)=∫xa t3et dt, then ddxf(x)= [MP PET 1989]
- ex(x3+3x2)
- x3ex
a3ex
None of these
Q. Which of the following pair(s) of functions is/are not identical
- f(x)=cosx, g(x)=1secx
- f(x)=|x|x, g(x)=1
- f(x)=sinx, g(x)=1cosec x
- f(x)=sgn(x), g(x)=|x|x
Q. If f(x)=∫x0(1+t3)−12 and g (x) is the inverse of f, then the value of g"(x)g2(x) is
- 32
- 23
- 13
- 12