Purely Real
Trending Questions
Q. Let A={x: x=2n+1, n∈W} and B={y: y=2n, n∈N}. If a relation R is defined from A to B, then which of the following is void relation?
- R={(x, y):x+y=11}
- R={(x, y):x+2y=21}
- R={(x, y):x+y=8}
- R={(x, y):2x+y=14}
Q. If z=1+cos6π5+isin6π5 , then
- amp(z)=−2π5
- amp(z)=2π5
- |z|=2cos2π5
- |z|=−2cos2π5
Q. If z1 and z2 are two complex numbers satisfying the equation ∣∣z1+z2z1−z2∣∣=1, then z1z2 is a number which is
Positive real
Negative real
- Zero or purely imaginary
- None of these
Q. If |z1|=|z2| and arg(z1z2)=π, then value of z1+z2 is
Q. Let z be a complex number such that the imaginary part of z is non - zero and a=z2+z+1 is real. Then, a cannot take the value
- −1
- 13
- 12
- 34
Q. If w=−9+3i1−2i, then
- |w|=3√2
- argw=π4
- |w|=√2
- argw=−3π4
Q. If w=−9+3i1−2i, then
- |w|=3√2
- argw=π4
- |w|=√2
- argw=−3π4
Q. The complex number(s) z satisfying Re(z2)=0 and |z|=√3 is (are)
- √32+√32i
- √32−√32i
- −√32+√32i
- −√32−√32i
Q. 3+2i sin θ1−2i sin θ will be real, if θ =
[IIT 1976; EAMCET 2002]
[IIT 1976; EAMCET 2002]
- 2nπ
- nπ+π2
- nπ
- None of these
Q. If z is a complex number such that z2=(¯z)2), then
z is purely real
z is purely imaginary
Either z is purely real or purely imaginary
- None of these
Q. For a<0, arg(ia) is
- π4
- π2
- π
- −π2