Range of a Quadratic Expression
Trending Questions
- a∈(0, 1)
- a∈[−1, 1]
- a∈(−1, 1)
- a∈[0, 1]
- 2
- 3
- 0
- 1
- 4
- 3
- 2
- 1
The maximum value of (2(a−x)(x+√x2+b2) ∀ x, a, b∈R) is :
a2−b2
a2+b2
a−b
a+b
Let (x, y, z) be points with integer coordinates satisfying the system of homogeneous equations:
3x−y−z=0−3x+z=0−3x+2y+z=0
Then the number of such points for which
x2+y2+z2≤100 is
Minimum value of x2+2xy+3y2−6x−2y x, y, ϵR is
- 10
- 12
- 11
- 9
- 5
- 7
- 10
- 4
- 1
- 3
- 2
- 4
If x2+5=2x−4cos(a+bx) where a, b∈(0, 5) is satisfied for alteast one real x, then the minimum value of a+bx is
3π2
π2
0
π
Minimum value of x2+2xy+3y2−6x−2y x, y, ϵR is
- 9
- 12
- 11
- 10
- [23, 53]
- [−53, 53]
- [−35, 35]
- [35, 53]
- 2
- 12
- 6
- 8
If x is real, the expression x+22x2+3x+6 takes all value in the interval
(−113, 13)
(113, 13)
(−13, 113)
[−13, 113]
If 22x+2−a⋅2x+2+5−4a≥0 has atleast one real solution, Then a ϵ
(−87, −1]
[1, ∞)
(−∞, 1]
(−3, 1]
- [70, 2894]
- [30, 70]
- [30, 2894]
- [30, 2894)
- (−∞, 0)∪(43, ∞)
- (43, ∞)
- R
- ϕ
- [121, 13]
- [−121, 13]
- [−121, 121]
- [−13, 13]
Find the range of rational expression y=x2+34x−71x2+2x−7 if x is real
[5, 9]
[–5, 9]
(−∞, 5]∪[9, ∞)
(−∞, −5]∪[9, ∞)
- −7
- 10
- −10
- 7
- x∈(13, 3]
- y∈(−3, −13)
- x∈[1, 3]
- y∈[−13, 13]
- (−∞, −6)
- (−6, 4)
- (4, ∞)
- [−6, 4]
- f(x)a+g(x)A>0 ∀ x∈R
- Roots of equation af(x)+Ag(x)=0 are real
- f(x)a+g(x)A>0 for some x
- f(x)+g(x)=0 for some x
- [−259, 3]
- ϕ
- R
- (−∞, −3)∪(3, ∞)
- 35
- 52
- 53
- 25
- (−23, 23]
- [−23, 23]
- (−23, 23)
- (−∞, 1)