Ratios of Distances between Centroid, Circumcenter, Incenter and Orthocenter of Triangle
Trending Questions
Q.
If as well as are in G.P. with the same common ratio, then the points :
Lie on a straight line
Lie on a circle
Lie on an ellipse
Are vertices of a triangle
Q. Given orthocentre ¯H and circumcentre ¯C for a triangle as 2^i+3^j and 4^i+5^k.Then the centroid of triangle can be given by,
- 10^i−13^j3
- −10^i+13^j3
- 10^i+13^j3
- −10^i−13^j3
Q. Given the vertices of triangle by position vectors ^i+^j+^k, ^i+^k and ^j+^k the centroid and Incentre of the triangle will be given by
- 2^i+2^j+3^k3, (√2+1)^i+(√2+1)^j+(√2+2)^k2+√2
- 2^i+2^j+3^k3, (√2+1)^i+(√2+2)^j+(√2+1)^k2+√2
- 2^i+2^j+3^k3, (√2+1)^i+(√2+2)^j+(√2+2)^k2+√2
- 2^i+2^j+3^k3, (√2+2)^i+(√2+1)^j+(√2+2)^k2+√2
Q. Given 3 points with position vectors ¯p1, ¯p2 and ¯p3 which form the vertices of a triangle with side lengths a=|¯p2−¯p1|, b=|¯p3−¯p2|, c=|¯p1−¯p3|. Then the in-centre is given by
- I=a.¯p1+a.¯p2+c.¯p3a+b+c
- I=b.¯p1+c.¯p2+a.¯p3a+b+c
- I=c.¯p1+a.¯p2+b.¯p3a+b+c
- I=¯p1+¯p2+¯p3a+b+c
Q. Given orthocentre ¯H and circumcentre ¯C for a triangle as 2^i+3^j and 4^i+5^k.Then the centroid of triangle can be given by,
- 10^i−13^j3
- −10^i+13^j3
- 10^i+13^j3
- −10^i−13^j3