Second Fundamental Theorem of Calculus
Trending Questions
Q. For a positive constant t, let α, β be the roots of the quadratic equation x2+t2x−2t=0. If the minimum value of 2∫−1[(x+1α2)(x+1β2)+1αβ]dx is √ab+c where a, b, c∈N, then the least possible value of (a+b+c) is
Q. ∫π4π6 cosec 2x dx=
- log 3
- log √3
log 9
None of these
Q. The integral 3π4∫π4dx1+cosx is equal to:
- −2
- 2
- 4
- −1
Q. ∫21√(x−1)(2−x)dx=
- π8
- π4
- 18
- none
Q. If z≠0 then ∫1000[arg|z|]dx is (where [.] denotes the greatest integer function)
- \N
- 10
- 100
- not defined
Q. Let f(x) and ϕ(x) are two continuous functions on R satisfying ϕ(x)=x∫af(t)dt, a≠0. If f(x) is an even function, then which of the following statements are correct?
Q.
The numbers P, Q and R for which the function
f(x)=Pe2x+Qex+Rx satisfies the conditions
f(0)=−1, f′(log 2)=31 and ∫log 40[f(x)−Rx]dx=392 are
given by
P = 2, Q = -3, R = 4
P = -5, Q = 2, R = 3
P = 5, Q = -2, R = 3
P = 5, Q = -6, R = 3
Q. Second fundamental theorem of integral calculus gives the method of calculating Definite Integral.
- True
- False
Q.
Let f(x) be a function satisfying f′(x)=f(x) with f(0) = 1
and g(x) be the function satisfying f(x)+g(x)=x2
The value of integral ∫10f(x)g(x) dx is equal to [AIEEE 2003; DCE 2005]
14(e−7)
- 14(e−2)
- 12(e−3)
None of these
Q. ∫balog xxdx= [MP PET 1994]
- log(log blog a)
- log(ab)log(ba)
- 12log(ab)log(ba)
- 12log(ab)log(ab)
Q. The value of 100∑n=1 n∫n−1ex−[x] dx, where [x] is the greatest integer ≤x, is :
- 100(e−1)
- 100e
- 100(1−e)
- 100(1+e)
Q. ∫21 ex(1x−1x2)dx= [MNR 1990; AMU 1999; UPSEAT 2000; Pb. CET 2004]
e22+e
- e−e22
- e22−e
None of these
Q. List IList II(I)∫20x4+1(x2+2)34dx=(P)√3√2(II)∫31(√1+(x−1)3+3√x2−1)dx=(Q)√2√3(III)∫203√x3−3x2+8x−6dx=(R)6(IV)∫πe2xe−2πxxdx=(S)0(T)π−e2
Which of the following is only INCORRECT combination?
Which of the following is only INCORRECT combination?
- (I)-(P)
- (IV)-(S)
- (II)-(S)
- (III)-(S)
Q.
If f(x)=∫x−1|t| dt, x≥−1, then [MNR 1994]
- f and f' are continous for x + 1 > 0
- f is continous but f' is not continous for x + 1 > 0
- f and f' are not continous at x = 0
- f is continous at x = 0 but f' is not so
Q. ∫t1 exx(1+x log x)dx=
- et
- et−e
- et+e
- None of these
Q. Let In=∫∞0e−x(sin x)ndx, nϵN, n>1 then I2008I2006 equals
- 2007×200620082+1
- 2008×200720082+1
- 2006×200420082−1
- 2008×200720082−1
Q. f(x) satisfies the relation f(x)−λπ/2∫0sinxcostf(t) dt=sinx.
If λ>2, then f(x) decreases in which of the following interval?
If λ>2, then f(x) decreases in which of the following interval?
- (0, π)
- (π2, 3π2)
- (−π2, π2)
- none of these
Q. ∫π0sinx dx is equal to -
- \N
- 1
- 2
- 3
Q. The value of e∫1x3+1x4+x3+x2+xdx is
- 4+π4−cot−1(√1+e2)
- 4+π4−sec−1(√1+e2)
- 4−π4−cos−1(√1+e2)
- 4−π4−sec−1(√1+e2)
Q.
∫10e2 In xdx= [MP PET 1990]
- 0
- 12
- 13
14
Q. ∫balog xxdx= [MP PET 1994]
- log(log blog a)
- log(ab)log(ba)
- 12log(ab)log(ba)
- 12log(ab)log(ab)
Q. The value of 100∑n=1 n∫n−1ex−[x] dx, where [x] is the greatest integer ≤x, is :
- 100(e−1)
- 100e
- 100(1−e)
- 100(1+e)
Q. Find 2∫0x2 dx as the limit of a sum
- 4
- 8
- 43
- 83
Q.
∫x20x+sin x1+cos xdx= [Roorkee 1978]
- -log 2
- log 2
- π2
- \N
Q. Let λ=∫91(12+√14+log3 x)dx+∫213x2−[x]3{x}dx then 2λ equals [where [.] denotes the greatest integer function and {.} denotes the fractional part function]