Sign of Trigonometric Ratios in Different Quadrants
Trending Questions
Q.
If , then
Q. The value of cot(19∑n=1cot−1(1+n∑p=12p)) is :
- 2223
- 2322
- 1921
- 2119
Q.
Find the supplement of .
Q.
If cos2A+cos2C=sin2B, then △ ABC is
[MP PET 1991]
Right angled
Equilateral
Isosceles
None of these
Q. The value of θ which satisfy the equation 3tan2θ+3tanθ−cotθ=1 (where n∈Z) can be
- nπ−π6
- nπ−π4
- nπ+π6
- nπ+π4
Q. If cosec θ=135 and θ∉1stquadrant. Then the value of secθ is
- 1213
- −1213
- 1312
- −1312
Q. If x∈(π, 3π2), then √1−sinx1+sinx is equal to
- −tanx−secx
- secx−tanx
- tanx+secx
- tanx−secx
Q.
Evaluate the value of
Q. The value of cotπ20cot3π20cot5π20cot7π20cot9π20 is
Q.
, . Area bounded by
Q. If [x] denotes the greatest integer ≤x, then the system of linear equations [sinθ]x+[–cosθ]y=0, [cotθ]x+y=0
- has a unique solution if θ∈(π2, 2π3)∪(π, 7π6)
- have infinitely many solution if θ∈(π2, 2π3)∪(π, 7π6)
- has a unique solution if θ∈(π2, 2π3) and have infinitely many solutions if θ∈(π, 7π6)
- have infinitely many solutions if θ∈(π2, 2π3) and has a unique solution if θ∈(π, 7π6)
Q. If sinθ=−45 and π<θ<3π2, then tanθ+cosθ=
- 1115
- −1115
- 925
- −925
Q. tan(35π6).sin(11π3).sec(7π3)cot(5π4).cosec(7π4).cos(17π6)=
- √23
- −√23
- √32
- √32
Q. If sin Asin B=√32 and cos Acos B=√52π2<A, B<π, then the value of tan A+tan B is
- √3−√5√5
- −√3−√5√5
- √3−√5√3
- −√3−√5√3
Q.
If , where is an acute angle, find the value of .
Q. tan(35π6).sin(11π3).sec(7π3)cot(5π4).cosec(7π4).cos(17π6)=
- √23
- −√23
- √32
- √32
Q. The value of sin(45∘+θ)−cos(45∘−θ) is
- 1
- 0
- 2cosθ
- 2sinθ
Q. The value of 12tan585∘+sec(−660∘)+sin405∘cot510∘−cosec (−570∘) is
- 52−√32
- 32−√32
- 12+√32
- 12−√32
Q. Let f(n)=(sin1)(sin2)(sin3)⋯(sin(n)) ∀ n∈N where n is in radians. Then the number of elements in the set A={f(1), f(2), …, f(6)} that are positive, is
- 2
- 3
- 4
- 5
Q. cos1∘+cos2∘+cos3∘+....+cos179∘ =
- \N
- 1
- -1
- 89
Q. The value of cot−13+cosec−1√5 is
- π2
- π6
- π3
- π4
Q. If A and B are non-zero complementary angles, then the point whose cordinates are (sinB+cosA, tanB+cotA) lies in
- First quadrant only
- Second quadrant only
- Both first and second quadrant
- Third quadrant only
Q. If cosθ=−725 and π<θ<3π2, then tanθ is equal to
- −257
- 257
- −247
- 247
Q.
Find the value of sinn1890∘+cosecn1890∘. Where n∈N
n
2n
1
2
Q. If √1−sinA1+sinA+sinAcosA=1cosA for all permissible values of A, then A can belongs to
- 1st quadrant
- 2nd quadrant
- 3rd quadrant
- 4th quadrant
Q. If the difference between two complementary angles is 52∘, then the smaller angle is
- 20∘
- 19∘
- 16∘
- 17∘
Q.
If y=|cos x|+|sin x| then dydx at x=2π3 is:
12(√3+1)
2(√3−1)
12(√3−1)
14(√3−1)
Q. The value of cot1∘cot2∘cot3∘⋯cot179∘ is
- √3
- 0
- 1
- −1
Q. If x=sin 130∘ cos 80∘, y=sin 80∘ cos 130∘, z=1+xy,
which one of the following is true
which one of the following is true
- x > 0, y > 0, z > 0
- x > 0, y < 0, 0 < z < 1
- x > 0, y < 0, z > 1
- x < 0, y < 0, 0 < z < 1
Q. if sin θ=0 ⇒θ = nπ, where n ∈ Z
- False
- True