Single Point Continuity
Trending Questions
Q. If the function f(x)=2p[2x+5]+q[3x−7] is continuous at x=1, then
(where [.] denotes greatest integer function and p, q ϵ R)
(where [.] denotes greatest integer function and p, q ϵ R)
- 2p+q=0
- p+2q=0
- p+q=0
- 10p−7q=0
Q. Let a, b and c be the side lengths of a triangle ABC and assume that a≤b and a≤c. If x=b+c−a2, then the minimum value of axrR, where r and R denote the inradius and circumradius, respectively of triangle ABC, is
Q. If f:R→[−1, 1] where f(x)=sin(π2[x]) ([.] denotes greatest integer function), then f(x) is:
- many-one function
- an onto function
- an into function
- a periodic function
Q. Let a, b, c∈R such that a+b+c=π.
If f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩sin(ax2+bx+c)x2−1, if x<1−1, if x=1a sgn(x+1)cos(2x−2)+bx2, if 1<x≤2
is continuous at x=1, then the value of a2+b25 is
( Here, sgn(k) denotes signum function of k )
If f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩sin(ax2+bx+c)x2−1, if x<1−1, if x=1a sgn(x+1)cos(2x−2)+bx2, if 1<x≤2
is continuous at x=1, then the value of a2+b25 is
( Here, sgn(k) denotes signum function of k )
- 3
- 5
- 12
- 8
Q. If f(x)=[x]−[x4], x∈R, where [x] denotes the greatest integer function, then :
- limx→4+f(x) exists but limx→4−f(x) does not exist.
- limx→4−f(x) exists but limx→4+f(x) does not exist.
- Both limx→4−f(x) and limx→4+f(x) exist but are not equal.
- f is continuous at x=4.
Q.
If the function
f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩(1+|sin x|)a|sin x|, , −π6<x<0b, x=0etan 2xtan 3x, 0<x<π6, is continuous at x = 0, then
a=loge b, a=23
b=loge a, a=23
a=loge b, b=2
none of these
Q. A continuous function can have some points where limit does not exist.
- True
- False