Standard Limits to Remove Indeterminate Form
Trending Questions
Q. In a triangle ABC with usual notation, which of the following is (are) CORRECT?
- If the angles A, B, C are in A.P., then b2=c2+a2−ca
- sin(B−C)sin(B+C)=b2−c2a2
- ∑b2−c2cosB+cosC=0
- 1+cos(A−B)cosC1+cos(A−C)cosB=a2+b2a2+c2
Q. If limx→0atan3x+(1−cos2x)x+sinx+tanx=1, then the value of a is
- 4
- 3
- 2
- 1
Q. Let [x] denote the greatest integer less than or equal to x. Then :
limx→0tan(π sin2 x)+(|x|−sin(x[x]))2x2:
limx→0tan(π sin2 x)+(|x|−sin(x[x]))2x2:
- equals π
- equals 0
- equals π+1
- does not exist
Q. If α is a repeated root of ax2+bx+c=0 then limx→αsin(ax2+bx+c)(x−α)2 is
- 0
- a
- b
- c
Q.
limx→0(e1/x−1)(e1/x+1)
0
1
-1
Does not exist
Q.
limx→0 1−cos2xx
[MMR 1983]
0
1
2
4
Q.
limx→01−cos x cos 2x cos 3xsin22x is equal to
72
73
74
75
Q. limx → 0sin(x2)ln(cos(2x2−x)) is equal to
- 2
- −2
- 1
- −1
Q.
limx→0 (x3cotx)1−cosx =
[AI CBSE ; DSSE 1988]
0
1
2
-2
Q.
limx→01−cos x cos 2x cos 3xsin22x is equal to
72
73
74
75
Q.
limx→0 x(ex−1)1−cosx =
0
∞
-2
2
Q. The value of limx→∞(p1/x+q1/x+r1/x+s1/x4)3x, where p, q, r, s>0 is equal to
- pqrs
- (pqrs)3
- (pqrs)3/2
- (pqrs)3/4
Q. limx→0sin(πcos2x)x2 equals
- −π
- π
- π2
- 1
Q. If n is the number of real solutions of the equation min(e−|x|, 1−e−|x|)=14 and L=limx→0−(e2x−1x+e3x−1x+e4x−1x+⋯ upto n terms), then the value of L is
- 5
- 7
- 10
- 14
Q.
Find the value of limn→∞1+2+3+....nn2
1
2
13
12
Q. limx→−∞{x4sin(1x)+x21+|x|3} is equal to
- 2
- 1
- −1
- does not exist
Q. Value of limx→∞(x2+2x−12x2−3x−2)2x+12x−1 is
- It does not exist
- 0
- −2
- 12
Q. limx→0sin2x√2−√1+cosx equals:
- 4√2
- 4
- √2
- 2√2
Q. If n is the number of real solutions of the equation min(e−|x|, 1−e−|x|)=14 and L=limx→0−(e2x−1x+e3x−1x+e4x−1x+⋯ upto n terms), then the value of L is
- 5
- 7
- 10
- 14
Q. limn→∞n.cos(π4n).sin(π4n) is equal to
- π4
- π6
- π9
- π3
Q.
limx→0 (x3cotx)1−cosx =
[AI CBSE ; DSSE 1988]
0
1
2
-2
Q. If limx→−1(tan(x+1)+a(e.ex+x)x−a2sin−1(x+1)+1)x+1√x+2−1=1,
then possible values of ′a′ is/are
then possible values of ′a′ is/are
- −2
- 0
- √3+1
- √3−1
Q.
If 0 < a < b, then limn→∞(bn+an)1/n is equal to
e
a
b
1
Q.
The value oflimx→∞(x2−1x2+1)x2is
1
e−1
e−2
e−3
Q. limx→02sinx−sin2xx3 is equal to
- 1
- −1
- 0
- does not exist
Q. limx→0(1−cos2x)(3+cos3x)xtan4x is equal to :
- 14
- 12
- 1
- 2
Q.
The value of limx→∞ x[tan−1(x+1x+2)−tan−1(xx+2)]is
1
-1
1/2
-1/2
Q. For each t∈R, let [t] be the greatest integer less than or equal to t. Then, limx→1+(1−|x|+sin|1−x|)sin(π2[1−x])|1−x|[1−x]
- equals 0
- equals 1
- equals −1
- does not exist
Q. limx→0sin(πcos2x)x2 is equal to:
- π2
- 1
- −π
- π
Q.
The value oflimh→0In(1+2h)−2In(1+h)h2is
1
-1
0
2