Sum of Binomial Coefficients of Odd Numbered Terms
Trending Questions
Q. If n is a positive integer, then (√3+1)2n−(√3−1)2n is :
- an irrational number
- an odd positive interger
- an even positive interger
- a rational number other than positive integers
Q. Find the value of nC1+nC5+nC9+nC13.....
- 2n−2(1+sinnπ4)
- 2n−22sinnπ4+2n−2
- 2n−12sinnπ4+2n−2
- 2n2sinnπ4+2n−1
Q. Let the coefficients of powers of x in the second, third and fourth terms in the binomial expansion of (1+x)n, where n is a positive integer, be in arithmetic progression. The sum of the coefficients of odd powers of x in the expansion is
- 32
- 64
- 128
- 256
Q. The sum of coefficients of intergral power of x in the binomial expansion (1−2√x)50is:
- 12(350−1)
- 12(250+1)
- 12(350+1)
- 12(350)
Q. The sum of coefficients of intergral power of x in the binomial expansion (1−2√x)50is:
- 12(350−1)
- 12(250+1)
- 12(350+1)
- 12(350)
Q. Let P=50∑r=150+rCr(2r−1)50Cr(50+r), Q=50∑r=0(50Cr)2 and R=100∑r=0(−1)r(100Cr)2. Then
- Q=R
- P−Q=−1
- Q+R=2P+1
- P−R=1