Sum of Binomial Coefficients with Alternate Signs
Trending Questions
Q. If (1+x)n=C0+C1x+C2x2+C3x3+⋯+Cnxn, then C0C2+C1C3+C2C4+⋯+Cn−2Cn=
- (2n)!(n!)2
- (2n)!(n−1)!(n+1)!
- (2n)!(n−2)!(n+2)!
- None of these
Q.
C0−C1+C2−C3+........+(−1)nCn is equal to
2n
2n−1
0
2n−1
Q. The sum of co-efficients of all even degree terms in x in the expansion of (x+√x3−1)6+(x−√x3−1)6, (x>1) is equal to:
- 24
- 26
- 29
- 32
Q.
Let S1 = nC0 + nC1 + nC2.............nCn and S2 = nC0 - nC1 + nC2 ..............+ (−1)n nCn
Find the value of S1S1+S2 is
Q. Sum of the series 3C1−4C2+5C3−6C4+⋯ upto n terms is (where Cr= nCr)
- −1
- 2
- −2
- 1
Q. Value of C0+2C1+3C2+4C3+…+(n+1)Cn is
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> ( where Cr= nCr)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> ( where Cr= nCr)
- (n+2)⋅2n
- n⋅2n
- n⋅2n−1
- (n+2)⋅2n−1
Q. If C0, C1, C2, …, Cn denote the binomial coefficients in the expansion of (1+x)n, then value of 12⋅C1+22⋅C2+32⋅C3+…+n2 Cn is
- n(n+1)2n−1
- n(n+1)2n−2
- n(n−1)2n−1
- n(n−1)2n−2
Q. If Cr represents 100Cr, then 5C0+8C1+11C2+… upto 101 terms is equal to
- (305)⋅2100
- (305)⋅299
- (310)⋅2100
- (310)⋅299
Q.
The sum of the series 20C0 - 20C1 + 20C2 - 20C3 ...............+ 20C10 is
−20C10
1220C10
0
20C10