Transformation of Roots: Algebraic Transformation
Trending Questions
If α, β are the roots of the equation 2x2−3x−5=0, then the equation whose roots are 5α , 5β is :
x2−3x−10=0
x2+3x+10=0
x2−3x+10=0
x2+3x−10=0
- abx2+(a+c)bx+(a+c)2=0
- acx2+(a+c)bx+(a+c)2=0
- acx2+(a+c)cx+(a+c)2=0
- None of these
- x2−4x+4=0
- x2+2x+3=0
- x2+4x−4=0
- x2+4x+4=0
- x2−6x+25=0
- x2+10x+25=0
- x2+6x+25=0
- x2−26x+25=0
Suppose a, b∈R and a≠ 0, b≠0. Let α, β be the roots of x2+ax+b=0. Find the equation whose roots are α2, β2.
bx2+(2b−a2)x+b=0
x2+(2b−a2)x+a2=0
x2+(a2−2b)x+b2=0
x2+(2b−a2)x+b2=0
- 2x2−25x−7=0
- 2x2−17x+7=0
- 4x2−17x+7=0
- 4x2−25x+7=0
Find the equation whose roots are reciprocals of the roots of 2x2+5x+4=0 .
2x2+4x+5=0
5x2+4x+2=0
4x2+5x+2=0
4x2+2x+5=0
- 14x2−37x−14=0
- 14x2+37x+14=0
- 14x2+37x−14=0
- 14x2−37x+14=0
- 3
- 2
- 1
- 0
- x2+2x+3=0
- x2+4x−4=0
- x2+4x+4=0
- x2−4x+4=0
- α−1, β−1
- α−2, β−2
- α2, β2
- αβ−1, α−1β
If a, b, c are the roots of the equation x3+2x2+1=0 . Find the equation whose roots are b+c−a, c+a−b, a+b−c.
x3+2x2+4x+9=0
x3 + x2+x+1=0
x3 + 2 x2+x+4=0
x3 + x2+4x+9=0
- 4x2−7x+16=0
- 4x2−7x−16=0
- 4x2+7x+16=0
- 4x2+7x−16=0
If α, β are the roots of equation a(x2−1)+2bx=0, then the equation whose roots are 2α−1β & 2β−1α is
ax2+2bx−a=0
ax2+6bx+9a=0
bx2+6ax−9b=0
ax2+6bx−9a=0
Suppose a, b∈R and a≠ 0, b≠0. Let α, β be the roots of x2+ax+b=0. Find the equation whose roots are α2, β2.
x2+(2b−a2)x+a2=0
x2+(2b−a2)x+b2=0
bx2+(2b−a2)x+b=0
x2+(a2−2b)x+b2=0
- (p3+q)x2−(5p3−2q)x+(p3−q)=0
- (p3+q)x2−(p3+2q)x+(p3+q)=0
- (p3+q)x2−(p3−2q)x+(p3+q)=0
- (p3−q)x2−(5p3+2q)x+(p3−q)=0
- x2−13x+4=0
- x2−5x+4=0
- x2+5x+4=0
- x2−3x−2=0
- 4x4+5x2+1=0
- 4x4−5x2+1=0
- x4−5x2−4=0
- x4+5x2+4=0
- x4−5x2−4=0
- 4x4−5x2+1=0
- 4x4+5x2+1=0
- x4+5x2+4=0
If α and β are the roots of the equation 2x2−3x+4=0, then the equation whose roots are α2 and β2 is
4x2+7x+1=0
4x2+7x+16=0
4x2+7x+6=0
4x2−7x+16=0
- ap=rc
- aq=cr
- aq=bp
- bp=aq
- 27x2+48x+2=0
- 27x2+46x+2=0
- 27x2+2x+48=0
- 46x2+27x+2=0
- x2−25x+144=0
- x2+25x+144=0
- x2+25x−144=0
- x2−25x−144=0
- (a2c2)x2+(2ac−b2)x+1=0
- (c2)x2+(2ac−b2)x+1=0
- (a2)x2+(2ac−b2)x+1=0
- (a2c2)x2+(2ac+b2)x+1=0
If a, b, c are the roots of the equation x3+2x2+1=0 . Find the equation whose roots are b+c−a, c+a−b, a+b−c.
x3 + 2 x2+x+4=0
x3+2x2+4x+9=0
x3 + x2+4x+9=0
x3 + x2+x+1=0
- 46x2+27x+2=0
- 27x2+2x+48=0
- 27x2+46x+2=0
- 27x2+48x+2=0
Let α, β be the values of m for which the equation (1+m)x2−2(1+3m)x+(1+8m) has equal roots. Find the equation whose roots are α+2 and β+2.
x2−4x+3=0
x2−5x+6=0
x2−3x=0
x2−7x+10=0
- 2+3α2+α, 2+3β2+β
- 2+α1+β, 2+β1+α
- 2+α3+β, 3+α2+β
- 2+3α1+α, 2+3β1+β