Transformation of Roots: Linear Combination of Roots
Trending Questions
- x2+7x+18=0
- x2+3x+10=0
- x2+3x=0
- x2+11x+18=0
- 9x2+6x+1=0
- 27x2+6x+1=0
- 27x2+6x−1=0
- 27x2−6x+1=0
- x2+22x+76=0
- x2+2x−44=0
- 9x2−18x+4=0
- x2+22x−76=0
- x3+12x−56=0
- x3−12x+56=0
- x3−12x−56=0
- x3+12x+56=0
- x2+35x−2=0
- x2+29x+2=0
- x2+19x+2=0
- x2+35x+2=0
- rational and equal roots
- non real roots
- irrational roots
- rational and distinct roots
- a(x2−1)+b(x−1)2+c(x+1)2=0
- a(x+1)2+b(x2−1)+c(x+1)=0
- a(x−1)2+b(x2−1)+c(x−1)=0
- a(x−1)2+b(x2−1)+c(x+1)2=0
- 6x2+5x+1
- 6x2−5x+1
- 6x2+5x−1
- 6x2−5x−1
- a(x−k)2+b(x−k)+c=0
- a(kx)2+b(kx)+c=0
- kax2+bkx+c=0
- a(xk)2+b(xk)+c=0
- 8
- a(x+1)2+b(x2−1)+c(x+1)=0
- a(x−1)2+b(x2−1)+c(x−1)=0
- a(x−1)2+b(x2−1)+c(x+1)2=0
- a(x2−1)+b(x−1)2+c(x+1)2=0
- a(x+k)2+b(x+k)+c=0
- a(x−k)2+b(x−k)−c=0
- a(x−k)2−b(x−k)+c=0
- a(x−k)2+b(x−k)+c=0
If α, β are the roots of ax2+bx+c=0, the correct statements about the equation a(x−2)2+b(x−2)+c=0 is
2α, 2β are the roots
α−2, β−2 are the roots
α+2, β+2 are the roots
α2, β2 are the roots
- 4x2+3x+4=0
- x2+3x+8=0
- 4x2+3x+2=0
- x2+3x+4=0
- −x2−5x+6=0
- −x2+5x=0
- −x2−5x=0
- −x2+5x+6=0
- x2+5x+6=0
- x2−5x+6=0
- a(x−k)2+b(x−k)−c=0
- a(x−k)2+b(x−k)+c=0
- None of the above
- a(x+k)2+b(x+k)+c=0
Find the equation whose roots are equal in magnitude but opposite in sign to the roots of the equation x5- 3 x3 + 2 x2 + 4x + 1 = 0.
x5- 3x3 + 2x2 + 4x + 1 = 0
x5 + 2x3 + 3x2 + 5x - 1 = 0
x5+ x3 + x2 + x + 1 = 0
x5 - 3x3 - 2x2 + 4x - 1 = 0
If α, β are the roots of the quadratic equation x2+3x+6=0 , then find the equation whose roots are 1+α1−α, 1+β1−β
5y2+5y+2=0
5y2+2y+5=0
2y2+5y+5=0
5y2−2y+5=0
- b2+4aca2
- b2−4aca2
- b2−4aca
- b2+4aca
- 23
- −23
- −32
- 32
- x2+7x−12=0
- x2−7x−12=0
- x2+7x+12=0
- x2−7x+12=0
- irrational roots
- rational and equal roots
- non real roots
- rational and distinct roots
- x2+3x+4=0
- 4x2+3x+4=0
- x2+3x+8=0
- 4x2+3x+2=0
If α, β are the roots of the quadratic equation x2+3x+6=0 , then find the equation whose roots are 1+α1−α, 1+β1−β
5y2+2y+5=0
5y2+5y+2=0
2y2+5y+5=0
5y2−2y+5=0
- a(x−k)2−b(x−k)+c=0
- a(x−k)2+b(x−k)+c=0
- a(x−k)2+b(x−k)−c=0
- a(x+k)2+b(x+k)+c=0
3x2+2x(k2+1)+k2−3k+2=0
has roots of opposite signs, lies in the interval
- (1, 2)
- (32, 2)
- (−∞, 0)
- (−∞, −1)
- x2+5x−1=0
- x2+5x+1=0
- x2+7x+13=0
- x2+9x+13=0
- 27x2+6x+1=0
- 27x2+6x−1=0
- 27x2−6x+1=0
- 9x2+6x+1=0