Trigonometric Equations
Trending Questions
Q. An equation involving one or more trigonometric ratios of unknown angle is called a trigonometric equation.
- True
- False
Q.
The value of the is
Q. The number of solutions of the equation 1+sinxsin2x2=0, in [−π, π]
- zero
- one
- two
- three
Q. Let α and β be non zero real numbers such that 2(cosβ−cosα)+cosαcosβ=1. Then which of the following is/are true?
- √3tan(α2)−tan(β2)=0
- tan(α2)−√3tan(β2)=0
- tan(α2)+√3tan(β2)=0
- √3tan(α2)+tan(β2)=0
Q. The total number of solutions of tanx+cotx=2cosecx in [−2π, 2π] is equal to.
- 7
- 6
- 4
- 2
Q.
Least positive integral value of x satisfying
(ex−2)(sinx−cosx)(x−loge2)(cosx−1√2)<0 is
5
2
4
3
Q. If cos x−sinαcotβsin x=cosα ,
then the value of tan(x2) is
then the value of tan(x2) is
- −tan(α2)cot(β2)
- tan(α2)tan(β2)
- −cot(α2)tan(β2)
- cot(α2)tan(β2)
Q. If α is a root of equation (2sinx−cosx)(1+cosx)=sin2x, β is a root of equation 3cos2x−10cosx+3=0 and γ is a root of equation 1−sin2x=cosx−sinx; 0≤α, β, γ≤π2, then cosα+cosβ+cosγ can be equal to
- 3√6+2√2+66√2
- 3√3−86
- 3√3+26
- None of these
Q. cot−1[(cosα)12]−tan−1[(cosα)12]=x, then sinx=
- tan α
- tan2(α2)
- cot2(α2)
- cot(α2)
Q.
How do you create a cosine equation?
Q. The inequality 2cosx≤∣∣√1+sin2x−√1−sin2x∣∣≤√2 where x∈[0, 2π] holds true in the interval [aπ2, bπ2]. Then the value of a+b is
Q. Let cos A+cos B=x; cos 2A+cos 2B=y; cos 3A+cos 3B=z, then which of the following is true?
- cos2 A+cos2 B=1+y2
- cos A. cos B=14(2x2−y−2)
- 2x3+z=3x(1+y)
- xyz=0, ∀ A, B∈R
Q.
e|sinx|+e−|sinx|+4a=0 will have exactly four different solutions in [0, 2π] if
a ∈ R
a ∈[−e4, −14]
a ∈[−1−e24e], ∞
None
Q. If x+siny=2020 and x+2020cosy=2019, where 0≤y≤π2, then the value of [x+y] is
( [.] denotes the greatest integer function )
( [.] denotes the greatest integer function )
Q. Number of real solutions of the equation sin(ex)=5x+5−x is
- 0
- 1
- 2
- infinitely many
Q.
The number of distinct solutions of the equation
54cos22x+cos4x+sin4x+cos6x+sin6x=2
In the interval [0, 2π] is
Q. If tan2α⋅tanβ=1 and tanα⋅tanγ=1 then
- (1+tanα)(1+tan(β2))=2sin(α+γ)
- tanα+tanβ=tanγ
- tan(α+β)=tanγ
- tan2γtanβ=−1
Q. If x+siny=2020 and x+2020cosy=2019, where 0≤y≤π2, then the value of [x+y] is
([.] denotes greatest integer function )
([.] denotes greatest integer function )
Q.
Total number of values in (−2π, 2π) and satisfying
log|cosx||sinx|+log|sinx||cosx|=2 is
2
4
6
8
Q. The value of an unknown angle which satisfies the given trigonometric equation is called a solution or a root of the equation.
- False
- True
Q. If α is a root of equation (2sinx−cosx)(1+cosx)=sin2x, β is a root of equation 3cos2x−10cosx+3=0 and γ is a root of equation 1−sin2x=cosx−sinx; 0≤α, β, γ≤π2, then sin(α−β) is equal to
- 1−√66
- 1−2√36
- 1−2√66
- √3−2√26
Q. The most general solutions of the equation secx−1=(√2−1)tanx are given by
- nπ+π8
- 2nπ, 2nπ+π4
- 2nπ
- None of these
Q.
Complete set of values of x satisfying cos2x > |sinx|, x ∈(−π2, π) is
(−π6, π)
(−π6, π6)∪(5π6, π)
(π6, π2)∪(5π6, π)
(−π6, 5π6)
Q.
e|sinx|+e−|sinx|+4a=0 will have exactly four different solutions in [0, 2π] if
a ∈ R
a ∈[−e4, −14]
a ∈[−1−e24e], ∞
None