Trigonometric Ratios of Compound Angles
Trending Questions
Q.
If then is
Q.
Let a vertical tower have its end on the level ground. Let be the mid-point of and be a point on the ground such that. If , then is equal to:
Q.
Express in terms of trigonometric ratios of angles between and .
Q.
If , then is equal to
Q. If A and B are two positive acute angles satisfying the equations 4−3cos2A=2cos2B and cos(A+2B)=0, then the value of 3sinA2cosB is
- 3cosAsinB
- cosBsinA
- 2cosBsinB
- sinBcosA
Q.
If and are the roots of the equation , then the value of is
Q.
If are the roots of , then is equal to
None of these
Q. If sinA+sin2A = 1& acos12A+bcos10A+ccos8A+dcos6A−1 = 0then a+b+c+d =
- 10
- 8
- 7
- 9
Q. If 2tanA+cotA=tanB, then the value of cotA+2tan(A−B) is
- 0
- 2
- 1
- −1
Q. In △ABC if cosA+sinA−2cosB+sinB=0, then the triangle is an
- Equilateral triangle
- Isoceles triangle
- Scalene triangle
Q. The value of the expression cosπ15cos2π15cos4π15sinπ30 is
- −132
- 132
- −116
- 116
Q. 1sin10∘−√3cos10∘=
- 1
- 2
- 3
- 4
Q. If tan40∘+2tan10∘=cotx, where x∈(0, π/2), then the possible value of x is
- 75∘
- 85∘
- 30∘
- 40∘
Q. The value of sin25212∘−sin22212∘ is
- √3−12√2
- √3+12√2
- √3−14√2
- √3+14√2
Q. If tan 35∘= k, then the value of tan 145∘−tan125∘1+tan145∘tan125∘=
- 2k1−k2
- 2k1+k2
- 1−k22k
- 1−k21+k2
Q. The value tan100∘+tan125∘+tan100∘tan125∘ is
- −1
- 1
- 1√3
- 12
Q. If tanA and tanB are the roots of x2−3x−7=0, then the value of sin2(A+B) is
- 4855
- 1673
- 4873
- 1655
Q. sin2α+cos2(α+β)+2sinα.sinβcos(α+β)=
- sin2α
- sin2β
- cos2α
- cos2β
Q. If tanα=1√x(x2+x+1), tanβ=√x√x2+x+1
and tanγ=√x−3+x−2+x−1, where x≠0, then α+β is
and tanγ=√x−3+x−2+x−1, where x≠0, then α+β is
- γ
- 2γ
- −γ
- −2γ
Q. The value of cos105∘+sin105∘cos105∘−sin105∘ is
- 1
- −√3
- −2
- −1√3
Q. Let A and B (where A>B), be acute angles. If sin(A+B)=1213 and cos(A−B)=35, then the value(s) of sin(2A) is/are
- 5665
- 1665
- −5665
- −1665
Q. If x1, x2, x3, ...., xn are in A.P. whose common difference is α, then the value of sin α(secx1 secx2+secx2 secx3 +... ...+secxn−1 secxn)=
- sin(n−1)αcos x1 cos xn
- sin n αcos x1 cos xn
- sin(n−1)α cos x1 cosxn
- sin n α cos x1 cosxn
Q. The value of the expression (tan4x+2tan2x+1)cos2x, when x=π12 is equal to
- 4(2−√3)
- 4(√2+1)
- 16cos2π12
- 16sin2π12
Q. Let tanA=p(p–1) and tanB=1(2p–1), if A, B∈(0, π/2) then A–B can be
- π2
- π4
- π3
- π6
Q. If cos6 α+sin6 α+K sin2 2α=1, then K=
- 43
- 34
- 12
- 2
Q. If a cos 2θ+b sin 2θ=c has α and β
as its solution, then the value of tan α+tan β is
as its solution, then the value of tan α+tan β is
- c+a2b
- 2bc+a
- c−a2b
- bc+a
Q.
Match the following
Given sinA=23 and sinB=14
A and B are acute angles.
(1) sin(A+B)(p) 2√15−√52+5√3(2) cos(A−B)(q) 55144(3) tan(A−B)(r) 2√15+√512(4) sin(A+B)sin(A−B)(s) 5√3+212
1-r, 2-p, 3-s, 4-q
1-s, 2-r, 3-q, 4-p
1-s, 2-r, 3-p, 4-q
1-r, 2-s, 3-p, 4-q
Q. Given that tan A, tan B are the roots of the equation x2−px+q=0, then the value of sin2(A+B) is
- p2p2+(1−q)2
- p2p2+q2
- q2p2−(1−q)2
- p2(p+q)2
Q. cos21∘+cos22∘+cos23∘+....+cos290∘=
- \N
- 1
- 45
- 892
Q. If sin α=1√5 and sin β=35, then β−α lies in the interval
- [0, π4]
- [π2, 3π4]
- [3π4, π]
- [π, 5π4]