Using Graph to Find Range of a Function
Trending Questions
Q.
The number of points of discontinuity of is/are (where denotes greatest integer function and denotes fractional part function) .
Q.
The coordinate of the point at which minimum value of subject to constraints is attained, is:
Q. The range of |x−2|+|x−5| is
- [2, ∞)
- [3, ∞)
- [4, ∞)
- [5, ∞)
Q. If f(x)=max(x3, x2, 164) ∀ x∈[0, ∞), then
- f(x)=⎧⎪ ⎪⎨⎪ ⎪⎩x2, 0≤x≤1 x3, x>1
- f(x)=⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩164, 0≤x≤14 x2, 14<x≤1 x3, x>1
- f(x)=⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩164, 0≤x≤18 x2, 18<x≤1 x3, x>1
- f(x)=⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩164, 0≤x≤18 x3, x>18
Q. The range of the function f(x)=2x−[2x−5] is
(where [.] denotes the greatest integer function)
(where [.] denotes the greatest integer function)
- (5, 7)
- [5, 7)
- (5, 6)
- [5, 6)
Q.
The function f(x)=2|x|+|x+2|−||x+2|−2|x||
has a local minimum or a local maximum at x=
-2
−23
2
23
Q. The range of the function f(x)=|x−1|+|x−2|+|x+1|+|x+2| where, x ϵ[−2, 2] is
- [6, 8]
- [2, 4]
- [0, 4]
- {1, 2}
Q. The range of the function f(x)=x+3|x+3|, x≠−3 is
- {3, −3}
- R−{−3}
- All positive integers
- {−1, 1}