Vn Method
Trending Questions
Q. The value of 1√5+√3+1√7+√5+1√9+√7+⋯⋯ upto 100 terms is
- 200√218+√12
- 100√203+√3
- 100√203−√3
- 200√218−√12
Q. If 360∑k=1(1k√k+1+(k+1)√k)=a, then the value of 19a is
Q. Trigonometric series of the form
sin(A−B)cosA⋅cosB+sin(B−C)cosB⋅cosC+sin(C−D)cosC⋅cosD
=tanA−tanD
As we know that,
sin(A−B)cosA⋅cosB=tanA−tanB
Based on the above given information, find nth term of the series
sinxcos3x+sin3xcos9x+sin9xcos27x+⋯ upto n terms
sin(A−B)cosA⋅cosB+sin(B−C)cosB⋅cosC+sin(C−D)cosC⋅cosD
=tanA−tanD
As we know that,
sin(A−B)cosA⋅cosB=tanA−tanB
Based on the above given information, find nth term of the series
sinxcos3x+sin3xcos9x+sin9xcos27x+⋯ upto n terms
- 12(tan3nx−tan3n−1x)
- 12(tan3n−1x−tan3nx)
- 12(cot3nx−cot3n−1x)
- 12(cot3n−1x−cot3nx)
Q. If n∑r=1Tr=n8(n+1)(n+2)(n+3) and n∑r=11Tr=n2+3n4p∑k=1k, then p is equal to
- n
- n−1
- n+1
- 2n
Q. If 360∑k=1(1k√k+1+(k+1)√k)=a, then the value of 19a is
Q. The sum of the series 13+115+135+163+⋯ upto n terms is Sn. Then 4S∞ equals
Q. The sum of the series 131+13+231+3+13+23+331+3+5+…… upto 16 terms is
- 246
- 646
- 446
- 746
Q. The sum of 31⋅2(12)+42⋅3(12)2+53⋅4(12)3+⋯ upto 20 terms is
- 1−121(12)20
- 1+121(12)20
- 1−120(12)21
- 1+120(12)21
Q.
Find the sum upto first 11 terms of the series 1.4.7 + 4.7.10 + 7.10.13 + . . . . . is
Q. If S=∞∑n=23n2+1(n2−1)3, then 16S is
Q. Given S1=k∑n=02n+3(n+1)2(n+2)2 and S2=k∑n=124n2−1
If S1−S2=36337×400, then k=
If S1−S2=36337×400, then k=
Q. 11.2+12.3+13.4+....+....1n(n+1) equals
[AMU 1995; RPET 1996; UPSEAT 1999, 2001]
[AMU 1995; RPET 1996; UPSEAT 1999, 2001]
- 1n(n+1)
- nn+1
- 2nn+1
- 2n(n+1)
Q. Let S=9999∑n=11(√n+√n+1)(4√n+4√n+1), then S is equal to
Q. Find the sum of first 10 terms of following series
S=3(1)1+5(13+23)12+22+7(13+23+33)12+22+32+....
S=3(1)1+5(13+23)12+22+7(13+23+33)12+22+32+....
- 440
- 450
- 660
- 220
Q. If Sr denotes the sum of the infinite geometric series whose first term is r and common ratio is 11+r, where r∈N, then the value of 10∑r=1S2r is
- 505
- 385
- 384
- 659
Q. If n∑k=1f(k)=n2(n+2), then the value of 10∑k=11f(k) is equal to
- 570
- 480
- 560
- 550
Q. List I has four entries and List II has five entries. Each entry of List I is to be correctly matched with one or more than one entries of List II.
List IList II (A)Possible value(s) of √i+√−i is (are)(P)√2(B)If z3=¯¯¯z (z≠0), (Q)ithen possible values of z is/are(C)1+14+1⋅34⋅8+1⋅3⋅54⋅8⋅12+⋯⋯∞(R)√2i(D)132+1+142+2+152+3+⋯⋯∞(S)12(T)1336
Which of the following is CORRECT combination?
List IList II (A)Possible value(s) of √i+√−i is (are)(P)√2(B)If z3=¯¯¯z (z≠0), (Q)ithen possible values of z is/are(C)1+14+1⋅34⋅8+1⋅3⋅54⋅8⋅12+⋯⋯∞(R)√2i(D)132+1+142+2+152+3+⋯⋯∞(S)12(T)1336
Which of the following is CORRECT combination?
- (C)→(P) ; (D)→(T)
- (C)→(S) ; (D)→(P)
- (C)→(S) ; (D)→(T)
- (C)→(P) ; (D)→(S)
Q. Let A1=[a1]A2=[a2a3a4a5]A3=⎡⎢⎣a6a7a8a9a10a11a12a13a14⎤⎥⎦⋯⋯An=[⋯] where ar=[log2r]
([⋅] denotes the greatest integer). Then trace of A10 is
([⋅] denotes the greatest integer). Then trace of A10 is
Q. Trigonometric series of the form
sin(A−B)cosA⋅cosB+sin(B−C)cosB⋅cosC+sin(C−D)cosC⋅cosD
=tanA−tanD
As we know that,
sin(A−B)cosA⋅cosB=tanA−tanB
Based on the above given information, find sum of the series
sinxcos3x+sin3xcos9x+sin9xcos27x+⋯ upto n terms
sin(A−B)cosA⋅cosB+sin(B−C)cosB⋅cosC+sin(C−D)cosC⋅cosD
=tanA−tanD
As we know that,
sin(A−B)cosA⋅cosB=tanA−tanB
Based on the above given information, find sum of the series
sinxcos3x+sin3xcos9x+sin9xcos27x+⋯ upto n terms
- 12(cot3nx−cotx)
- 12(tan3nx−tanx)
- 12(tan3x−tan3n−1x)
- 12(cot3x−cot3n−1x)
Q. The sum of (n + 1) terms of 11+11+2+11+2+3+...... is
[RPET 1999]
[RPET 1999]
- nn+1
- 2nn+1
- 2n(n+1)
- 2(n+1)n+2
Q. The nth term of a sequence of numbers is an and given by the formula an=an−1+2n for n≥2 and a1=1.
The sum of first 20 terms is
The sum of first 20 terms is
- 3060
- 3059
- 2680
- 2679
Q. The sum of the following series
1+6+9(12+22+32)7+12(12+22+32+42)9 +15(12+22+...+52)11+...up to 15 terms, is :
1+6+9(12+22+32)7+12(12+22+32+42)9 +15(12+22+...+52)11+...up to 15 terms, is :
- 7510
- 7820
- 7830
- 7520