Antiderivative
Trending Questions
- −tan(−3x+4)3+C
- tan(−3x+4)4+C
- tan(−3x+4)3+C
- −cot(−3x+4)4+C
- sint+C
- –sint+C
- −2sint+C
- 2sint+C
- 23(1+x)32−23(x)32+C
- 43(1+x)32−23(x)32+C$
- 32(1+x)32−23(x)32 +C
- 43(1+x)32−43(x)32 +C$
- −x2cosx+2(xsinx+cosx)
- −x2cosx−2(xsinx+cosx)
- x2cosx+(2xsinx+cosx)
- x2cosx−(2xsinx−cosx)
- x22−x33+c
- ln|x|−x33−13x+c
- x−x23−x23+c
- x−x22−x33+c
- 16ln(6t−1)+C
- 112ln(6t−1)+C
- 16ln(12t−1)+C
- 61ln(6t−1)+C
i. ∫(sinx+cosx)dx
ii. ∫(3x2+4)dx
- i.cosx+sinx+C
ii.x3−4x+C - i.−cosx−sinx+C
ii.x3+2x+C - i.−cosx+sinx+C
ii.x3+4x+C - i.−cosx−sinx+C
ii.x3−2x+C
Find the integral of the given function w.r.t - x
y=x−1x+1x2
x22−lnx+1x+c
x22+lnx+1x+c
x22−lnx−1x+c
None of these
- sinx
- cosx
- -sinx
- tanx
- −sec(−2x+3)2+C
- sin(−2x+3)3+C
- sec(−2x+3)3+C
- −sin(−2x+3)2+C
- −sin(−2x+3)2+C
- −sec(−2x+3)2+C
- sin(−2x+3)3+C
- sec(−2x+3)3+C
- x33−1x+x+c
- x33+1x+2x+c
- x33−1x+2x+c
- x33+1x+x+c
Find the integral of the given function w.r.t - x
y=e2x+1x2
2e2x−1x+c
ex2−1x+c
e2x2−1x+c
e2x−1x+c
Find the integral of the given function w.r.t x
y=cos(8x+6)+cosec2(7x+5)+6sec x tan x
sin(8x+6)8+cot(7x+5)7+6sec x tan x
sin(8x)−cot(7x)+6sec x+c
sin(8x+6)8−cot(7x+5)7+6sec x + c
sin(8x+6)−cot(7x+5)6sec x+c
- sinx+x32+C
- sinx+x36+C
- sinx+x23+C
- sinx+x33+C
- x2ex+2ex(x+1)
- x2ex−2ex
- x2ex−2ex(x−1)
- 2ex(x−1)
Find the integral of the given function w.r.t x
y=sin(8x)+x
−cos 8x8+x22+c
8 cos 8x8+1+c
cos 8x8+x22+c
cos 8x8+1+c
Find the integral of the given function w.r.t - x
y=x−1x+1x2
x22−lnx+1x+c
x22+lnx+1x+c
x22−lnx−1x+c
None of these
- sinx
- cosx
- -sinx
- tanx
- sin x
- cos x
- - sin x
- tan x
- x44−ex+sinx
- 3x2−ex+sinx
- x44−ex−sinx
- 3x2−ex−sinx
- 16ln(6t−1)+C
- 112ln(6t−1)+C
- 16ln(12t−1)+C
- 61ln(6t−1)+C
- 2(√t−1√t)+c
- 2(√t+1√t)+c
- 2(1√t−√t)+c
- 2(√t+2√t)
- 2(√t−1√t)+c
- 2(√t+1√t)+c
- 2(1√t−√t)+c
- 2(√t+2√t)
- 13y2+4y+3+C
- (3y2+4y+3)22+C
- 3y2+4y+3+C
- (6y+4)3y2+4y+3+C
Find the integral of the given function w.r.t x
y=sin 6x+10sec2x−cosec xcot x
6cos 6x+20sec2xtan x+cosec xcot x+cosec3x+c
cos 6x+10tan x+cosec x+c
−cos(6x)6+10tan x−(cosec x)+c
−cosec 6x+10tan x+cosec x+c
Find the Integral of the given function w.r.t x
Y=3x2−1√x
3x3−2√x + c
x3−2√x
6x+12(x)3/2
x3−2√x+c
- 2x33+2x+c
- 2x33−2x+c
- x33−2x+c
- x33+2x+c