Chain Rule of Differentiation
Trending Questions
Q. If y=sin(lnx), then dydx will be
- sinlnxx
- −sin(lnx)
- −cos(lnx)
- cos(lnx)x
Q. Derivative of f(x)=cos(x2) is
- −(2x)sin(x2)
- (2x)sin(x2)
- −(x2)sin(x2)
- (x2)sin(x2)
Q. Find derivative of f(x)=elnx+sinx+8
- elnx.1x−sinx
- elnx.1x+cosx
- elnx.1x2+cosx
- elnx.1x−cosx
Q.
The value of the integral (where is a constant of integration)
Q. Derivative of f(x)=excos(x2) is
- ex(cosx2+2xsinx2)cos(x2)
- ex(cosx2−2xsinx2)cos2(x2)
- ex(cosx2+2xsinx2)cos2(x2)
- ex(cosx2−2xsinx2)cos(x2)
Q. Find derivative of f(x)=elnx+sinx+8
- elnx.1x2+cosx
- elnx.1x−sinx
- elnx.1x+cosx
- elnx.1x−cosx
Q. Find dydx of y=tanx2.
- 4xsec2x2
- 2xtan2x2
- 2xsec2x
- 2xsec2x2
Q. If y=sin2θ+cos3θ. Find dydθ.
- 2cosθ−3sin2θ
- 2sinθcos2θ−3cos2θ
- 2sinθcosθ−3sinθcos2θ
- 2sinθcosθ−3sin2θcosθ
Q. If y=sin5θ+cos8θ. Find dydθ.
- sin4θcos3θ+tanθ
- sin4θcos3θ+tan5θ
- sin2θcos3θ+tan5θ
- 5cosθsin4θ−8sinθcos7θ
Q. Derivative of f(x)=sin(x3+2x+1) is
- cos(3x2+2)
- cos(x3+2x+1)(3x2+2)
- cos(x3+2x+1)(3x2−2)
- cos(x3+2x+1)
Q.
If y=e4x sin2x, then dydx=?
e4xcos2x
4e4xsin2x
2e4x[cos2x+2sin2x]
none of these
Q. Differentiation of sinx2 w.r.t. x is
- cosx2
- 2xcosx2
- x2cos(x2)
- −cos2x
Q. If surface area of a cube is changing at a rate of 5 m2/s , find the rate of change of body diagonal at the moment when side length is 1 m.
- 5 m/s
- 5√3 m/s
- 52√3 m/s
- 54√3 m/s
Q. Find the derivative of y=(x2+1)(x3+3).
- 5x4+3x2+6x
- x4+3x2+6x
- 3x4+3x2+x
- 2x4+3x2+6x
Q. Derivative of f(x)=cos(x2) is
Q. Find the derivative of y=(x2+1)(x3+3).
- x4+3x2+6x
- 5x4+3x2+6x
- 3x4+3x2+x
- 2x4+3x2+6x
Q. If y=tan[log(x2)], then dydx is -
- 2x sec2[log(x2)]
- 2 sec2[log(x2)]x
- x sec2[log(x2)]
- 1x2sec2[log(x2)]
Q. Derivative of f(x)=xsin(√x) is
- cos(√x)2√x+sin(√x)
- √x.cos(√x)2−sin(√x)
- √x.cos(√x)2+sin(√x)
- cos(√x)2√x−sin(√x)
Q.
If x=at4, y=bt3, then dydx=?
3b4at
4at3b
12abt
none of these
Q. Derivative of f(x)=exsin(√x) is
- ex.cos(√x)2√x+exsin(√x)
- ex.sec(√x)2√x−exsin(√x)
- ex.cos(√x)2√x+excos(√x)
- ex.sin(√x)2√x+excos(√x)
Q. Find the derivative of function y=xcosx.
- cosx−xsinx
- cosx−sinx
- xcosx−sinx
- None of the above
Q. If f(x)=x cosx, find f′′(x).
- −cosx−2 sinx
- −xcosx−2sinx
- −2xsinx−2cosx
- −xsinx−2cosx
Q. If y=cosx3, then find dydx at x=0
- 0
- 1
- −3
- 3
Q. Derivative of f(x)=exsin(√x) is
- ex.cos(√x)2√x+exsin(√x)
- ex.sec(√x)2√x−exsin(√x)
- ex.cos(√x)2√x+excos(√x)
- ex.sin(√x)2√x+excos(√x)
Q. Find the derivative of y with respect to x at x=1, where function y is expressed as y=√x3+1 .
- 12√2
- 3√2
- 3√2√5
- 32√2
Q.
Prove the given identity by using the identity :
.
Q. If surface area of a cube is changing at a rate of 5 m2/s , find the rate at which length of the body diagonal changes, at a moment when side length is 1 m.
- 5 m/s
- 5√3 m/s
- 52 m/s
- 54√3 m/s
Q.
y=cos x3, then dydx=?
−3xsinx3
sinx3
sinx3x2
none of these
Q. If y=sin2θ+cos3θ. Find dydθ.
- 2cosθ−3sin2θ
- 2sinθcos2θ−3cos2θ
- 2sinθcosθ−3sinθcos2θ
- 2sinθcosθ−3sin2θcosθ