Spring Block's Time Period
Trending Questions
- T=2π√3m2K
- T=2π√2m3K
- T=2π√m3K
- T=2π√mK
- 10 ms−2
- 100 ms−2
- 200 ms−2
- 0.1 ms−2
- 2π√mK
- π√mK+π ⎷mK2
- π ⎷m3K2
- π√mK+π√m2K
- 5 s
- 10 s
- 2.5 s
- 20 s
- 2π
- π
- π2
- √2x
- 2π√Mk
- 2π√Mk
- 2π√m+M2k
- 2π√Mmk(m+M)
Select the incorrect option.
- If the collision takes place at extreme position, amplitude does not change
- If the collision takes place at mean position, amplitude decreases
- If the collision takes place at mean position, time period decreases
- If the collision takes place at extreme position, time period increases
- 8.1 m, 1.54 s
- 10 m, 1.54 s
- 8.1 m, 1.25 s
- 12.2 m, 1.54 s
- 0.31 s
- 0.52 s
- 0.1 s
- 0.9 s
(Given:θ=45∘, β=30∘)
- T=2π√m4k
- T=2π√m6k
- T=2π√3m4k
- T=2π√m2k
A tray of mass M=10 kg is supported on two identical springs, each of spring constant k, as shown in the figure. When the tray is depressed a little and released, it executes simple harmonic motion of period 1.5 s. When a block of mass m is placed on the tray, the period of oscillation becomes 3.0 s. The value of m is
10 kg
20 kg
30 kg
40 kg
- 2π√mK
- π√mK+π ⎷mK2
- π ⎷m3K2
- π√mK+π√m2K
Two springs of force constants K1 and K2 are connected to a mass m as shown. The frequency of oscillation of the mass is f. If both K1 and K2 are made four times their original values, the frequency of oscillation becomes:
f4
4f
2f
f2
- T=2π√m2K
- T=2π√mK
- T=2π√4mK
- T=2π√m4K
- 0.93 s
- 0.62 s
- 0.31 s
- None of these
- In equilibrium, the spring will be stretched by 1 cm
- If the body is raised till the spring attains its natural length and then released, it will go down by 2 cm before moving upwards
- The frequency of oscillation will be nearly 50 Hz
- All of the above
- T=t1+t2
- T2=t21+t22
- 1T=1t1+1t2
- 1T2=1t21+1t22
Column IColumn II(A) If k (the spring constant) is made 4 times(p) Angular speed will become 16 times(B) If m (the mass of block) is made 4 times(q) Potential energy will become 4 times(C) If k and m both are made 4-times(r) Kinetic energy will remain unchanged(s) None
- A→s, B→q, C→q
- A→q, B→r, C→q
- A→q, B→s, C→r
- A→r, B→p, C→s
- 916
- 34
- 43
- 169
- 34
- 43
- 169
- 916
(i) The frequency of oscillations.
(ii) The maximum acceleration of the mass, and
(iii) the maximum speed of the mass?
- 3.18 Hz, 8 m/s2, 0.40 m/s
- 1.57 Hz, 16 m/s2, 0.80 m/s
- 3.18 Hz, 32 m/s2, 1.6 m/s.
- 3.18 Hz, 16 m/s2, 0.80 m/s
- 1.78 m, 2 s
- 8.9 m, 2 s
- 11.18 m, 2 s
- 16 m, 4 s
- T=2π√3m2K
- T=2π√2m3K
- T=2π√m3K
- T=2π√mK
- 2π√mk
- 2π√msinθk
- 2π√mgka
- none of the above
A mass attached to a spring executes SHM
Match the following conditions.
(i) vx>0, ax>0 (I)x>0
(ii) vx<0, ax>0
(iii) vx>0, ax<0 (II)x<0
(iv) vx<0, ax<0
(i) - II; (ii) - I; (iii) - I; (iv) - I
(i) - II; (ii) - II; (iii) - I; (iv) - I
(i) - I; (ii) - II; (iii) - I; (iv) - I
(i) - I; (ii) - I; (iii) - II; (iv) - II
The mass M shown in the figure oscillates in simple harmonic motion with amplitude A. The amplitude of the point P is
k1Ak2
k2Ak1
k1Ak1+k2
k2Ak1+k2
(Given:θ=45∘, β=30∘)
- T=2π√m4k
- T=2π√m6k
- T=2π√3m4k
- T=2π√m2k
- 2π
- π
- π2
- √2x
- 34
- 43
- 169
- 916
- 1:1
- 2:1
- √3:2
- 4:1