Thermal Stress
Trending Questions
Q. The temperature of a wire of length 1 m and area of cross section
1 cm2 is increased from 0∘C to 100∘C. If the length of rod is not allowed to increase, then force developed will be (α= 10−5 /C and Y = 1011 Nm2)
1 cm2 is increased from 0∘C to 100∘C. If the length of rod is not allowed to increase, then force developed will be (α= 10−5 /C and Y = 1011 Nm2)
- 103 N
- 104 N
- 105 N
- 109 N
Q. A steel rod of length 5 m and diameter 30 mm is fixed between two rigid supports. Determine the thermal stress and change in diameter of the rod, when the temperature increases by 50 ∘C. Take Young's modulus of elasticity (Y)=2.0×106 kg/cm2, coefficient of thermal expansion (α)=12×10−6 /∘C and Poisson's ratio (ν)=0.3.
- 120 kg/cm2, 0.0234 mm
- 1200 kg/cm2, 0.018 mm
- 12000 kg/cm2, 0.0054 mm
- 1200 kg/cm2, 0.0234 mm
Q. There is some change in length when a 33000 N tensile force is applied on a steel rod of area of cross section 10−3 m2. The change of temperature required to produce the same elongation, if steel rod is heated, is: (The modulus of elasticity is 3×1011 N/m2 and the coefficient of linear expansion of steel is 1.1×10−5∘C−1)
- 10∘C
- 1∘C
- 20∘C
- 30∘C
Q. A wire of length L0 is supplied heat to to raise its temperature by T. If γ is the coefficient of volume ex the wire and Y is the young's modulus of the wire then the energy density stored in the wire is
- 12γ2T2Y
- 13γ2T2Y3
- 118γ2T2Y
- 118 γ2T2Y
Q.
In the given figure, a rod is free at one end and other and is fixed. When we change the temperature of rod by ΔT, then strain produced in the rod will be
αΔT
12αΔT
- zero
- information incomplete
Q. A steel bar 2.5 cm in diameter is rigidly attached to two parallel supports which are 5 m apart. Find the stress and the change in the diameter of the bar when the temperature is increased by 100∘C.
Take α=12×10−6/∘C, Y=210 GPa.
Take α=12×10−6/∘C, Y=210 GPa.
- 252 MPa, 0.03 mm
- 150 MPa, 0.13 mm
- 59 MPa, 0.33 mm
- 212 MPa, 0.13 mm
Q. An iron rod of length 1 m is fixed between two walls as shown in figure. Find thermal stress and thermal strain developed in the rod if it is heated by ΔT=20∘C
(Given: Coefficient of linear expansion of iron is 1.2×10−5 ∘C−1; Young's modulus of iron is 2×1011 N/m2).
(Given: Coefficient of linear expansion of iron is 1.2×10−5 ∘C−1; Young's modulus of iron is 2×1011 N/m2).
- 24×107 N/m2, 48×10−5
- 48×106 N/m2, 32×10−4
- 32×107 N/m2, 48×10−4
- 48×106 N/m2, 24×10−5
Q. Two rods of lengths L1 and L2 are made of materials whose coefficients of linear expansion are α1 and α2 respectively. If the difference between the two lengths is independent of temperature, then choose the correct option.
- (L1/L2)=(α1/α2)
- (L1/L2)=(α2/α1)
- L21α1=L22α2
- α21L1=α22L2