a1,a2,…….an are A.P. Where a1 > 0 for all i, then 1√a1+√a2+1√a2+√a3+....+1√an−1+√an
Let d be the common difference
⇒1√a1+√a2+1√a2+√a3+....+1√an−1+√an
⇒√a2−√a1d+√a3−√a2d+...+√an−√an−1d=√an−√a1d , cancelling the terms
√a2−√a1d+√a3−√a2d+...+√an−√an−1d=√an−√a1d=an−a1(√a1+√a2)d=(n−1)√an+√a1