Given:
a2b2=1To find: S3
Δ=∣∣
∣
∣∣1+a2−b22ab−2b2ab1−a2+b22a2b−2a1−a2−b2∣∣
∣
∣∣
Applying R3→bR3,R1→R1+bR3
Δ=1b∣∣
∣
∣∣1+a2+b20−b(1+a2+b2)2ab1−a2+b22a2b−2a1−a2−b2∣∣
∣
∣∣
Δ=1+a2+b2b∣∣
∣
∣∣10−b2ab1−a2+b22a2b−2a1−a2−b2∣∣
∣
∣∣
Applying R3→aR3,R2→R2+aR3
Δ=1+a2+b2ab∣∣
∣
∣∣10−b01+a2+b2a(1+a2+b2)2b−2a1−a2−b2∣∣
∣
∣∣
Δ=(1+a2+b2)2ab∣∣
∣
∣∣10−b01a2b−2a1−a2−b2∣∣
∣
∣∣
Now apply R1→2bR1,R3→R3−2bR1
Δ=(1+a2+b2)22ab2∣∣
∣
∣∣10−b01a0−2a1−a2+b2∣∣
∣
∣∣
R2→2aR2,R3→R3+2aR2
Δ=(1+a2+b2)24a2b2∣∣
∣
∣∣10−b01a001−a2+b2∣∣
∣
∣∣
Δ=(1+a2+b2)34a2b2,a2b2=1
Δ=(1+a2+b2)34
Applying AP, GP comparison
AP≥GP
a2+b22≥√a2b2
⇒a2+b22≥1
⇒a2+b2≥2
Least value of a2+b2=2
S=(1+2)34=334
4S3=4×94=9