Given that a2,b2,c2 are in AP
⇒a2+ab+bc+ca,b2ab+bc+ca,
c2+ab+bc+ca are in AP
⇒(a+b)(a+b),(b+c)(b+a),(c+a)(c+b) are in AP
⇒(a+b)(a+c)(b+c)b+c,(b+c)(b+c)(c+a)(c+a),
(c+a)(c+b)(a+b)a+b are in AP
⇒1b+c,1c+a,1a+b are in AP
⇒a+b+cb+c,a+b+cc+a,a+b+ca+b are in AP
⇒a+b+cb+c−1,a+b+cc+a−1,a+b+ca+b−1 are in AP
⇒ab+c,bc+a,ca+bare in AP
Hence the proof.