The correct option is
D (1,0) or
(7,2)let us consider the coordinates of P is (a,b) then,
PA=√(a−3)2+(b−4)2
WKT PA=PB
√(a−3)2+(b−4)2=√(a−5)2+(b+2)2
On squaring both sides we get,
(a−3)2+(b−4)2=(a−5)2+(b+2)2
By simplifying this we get,
⇒a−3b=1.....(1)
Let area of triangle PAB = 10 sq.units.
⇒12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|=10
⇒|a(4+2)+3(−2−b)+5(b−4)|=20
By simplifying this we get,
3a+b=23.....(2)
or
3a+b=3.....(3)
Solution form (1) and (2)
Multiply eqn (2) by 3 we get
9a+3b=69.....(4)
Now add (1) and (4)
10a=70
a=7
substitute a value in (1)
7−3b=1
b=2
Hence (a,b)=(7,2)
Solution form (1) and (3)
Multiply eqn (3) by 3 we get
9a+3b=9.....(5)
substitute a value in (1)
b=0
Finally the coordinates of P are (1,0) or (7,2).