The correct option is D 3abc
a3cos(B−C)=a2(acos(B−C))
Using sine rule for a=ksinA, we get
⇒a3cos(B−C)=a2(ksinA.cos(B−C))
We have A+B+C=π and A=π−(B+C)
⇒sinA=sin(π−(B+C))=sin(B+C)
∴a3cos(B−C)=a2ksin(B+C)cos(B−C)
=a2k2(sin2B+sin2C)
=a2k2(2sinBcosB+2sinCcosC)
=a2(ksinBcosB+ksinCcosC)
=a2(bcosB+ccosC) ..............(1)
Now,b3cos(C−A)=b2ksin(C+A)cos(C−A)
=b2k2(sin2C+sin2A)
=b2k2(2sinCcosC+2sinAcosA)
=b2(ksinCcosC+ksinAcosA)
=b2(ccosC+acosA) ..............(2)
Again,b3cos(C−A)=c2ksin(A+B)cos(A−B)
=c2k2(sin2A+sin2B)
=c2k2(2sinAcosA+2sinBcosB)
=c2(ksinAcosA+ksinBcosB)
=c2(acosA+bcosB) ..............(3)
Adding eqns(1),(2) and (3) we get
a3cos(B−C)+b3cos(C−A)+c3cos(A−B)
=a2(bcosB+ccosC)+b2(ccosC+acosA)+c2(acosA+bcosB)
Taking common, we get
=ab(acosB+bcosA)+bc(bcosC+ccosB)+ca(ccosA+acosC)
We know that acosB+bcosA=c,bcosC+ccosB=a and ccosA+acosC=b
=abc+abc+abc=3abc