wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a3cos(BC)+b3cos(CA)+c3cos(AB) is equal to

A
3abc
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3(a+b+c)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
abc(a+b+c)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 3abc
a3cos(BC)=a2(acos(BC))
Using sine rule for a=ksinA, we get
a3cos(BC)=a2(ksinA.cos(BC))
We have A+B+C=π and A=π(B+C)
sinA=sin(π(B+C))=sin(B+C)
a3cos(BC)=a2ksin(B+C)cos(BC)
=a2k2(sin2B+sin2C)
=a2k2(2sinBcosB+2sinCcosC)
=a2(ksinBcosB+ksinCcosC)
=a2(bcosB+ccosC) ..............(1)
Now,b3cos(CA)=b2ksin(C+A)cos(CA)
=b2k2(sin2C+sin2A)
=b2k2(2sinCcosC+2sinAcosA)
=b2(ksinCcosC+ksinAcosA)
=b2(ccosC+acosA) ..............(2)
Again,b3cos(CA)=c2ksin(A+B)cos(AB)
=c2k2(sin2A+sin2B)
=c2k2(2sinAcosA+2sinBcosB)
=c2(ksinAcosA+ksinBcosB)
=c2(acosA+bcosB) ..............(3)
Adding eqns(1),(2) and (3) we get
a3cos(BC)+b3cos(CA)+c3cos(AB)
=a2(bcosB+ccosC)+b2(ccosC+acosA)+c2(acosA+bcosB)
Taking common, we get
=ab(acosB+bcosA)+bc(bcosC+ccosB)+ca(ccosA+acosC)
We know that acosB+bcosA=c,bcosC+ccosB=a and ccosA+acosC=b
=abc+abc+abc=3abc

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon