The correct option is A 0, 3, 3
For A−1 to be non existent, |A|=0
|A|=∣∣
∣∣3−x2224−x1−2−4−1−x∣∣
∣∣=0
R2→R2+R3
∣∣
∣∣3−x220−x−x−2−4−1−x∣∣
∣∣=0
(−x)∣∣
∣∣3−x22011−2−4−1−x∣∣
∣∣=0
R1→R1−2R2
(−x)∣∣
∣∣3−x00011−2−4−1−x∣∣
∣∣=0
(−x)(3−x(−1−x+4))=0
(−x)(3−x)(3−x)=0
x=0,3,3