The correct option is
D (7,2)Let the coordinate P be
(x,y)Since it is given that PA=PB
So, by using distance formula
P(x,y) and A(3,4)
PA=√(3−x)2+(4−y)2
P(x,y) and B(5,−2)
PA=√(5−x)2+(−2−y)2
then,
√(3−x)2+(4−y)2=√(5−x)2+(−2−y)2
Squaring both sides
(3−x)2+(4−y)2=(5−x)2+(−2−y)2
9+x2−6x+16+y2−8y=25+x2−10x+4+y2+4y
−6x−8y=−10x+4+4y
4x−12y=4
x−3y=1.......(1)
Area of △PAB=10
Area of triangle of (3,4),(5,-2) and (x,y)
Area of triangle =12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
10=12[3(−2−y)+5(y−4)+x(4+2)]
−6+2y−20+6x=20
6x+2y=46
3x+y=23......(2)
Since x−3y=1⇒x=3y+1
Equation (2) implies
3(3y+1)+y=23
9y+3+y=23
10y=20
y=2
x=3y+1
x=3×2+1
x=7
Therefore, the coordinates are (7,2).