A(4,0) B(−4,0) Let P(x,y)
PA+PB=10
√(x−4)2+y2+√(x+4)2+y2=10
Squaring, we get
(x−4)2+y2+(x+4)2+y2+2√[(x−4)2+y2][(x+4)2+y2]=100
2y2+2(x2+16)+2√y4+y2[2(x2+16)]+(x2−16)2=100
√y4+2y2(x2+16)+(x2−16)2=34−(x2+y2)
Squaring again, we get
y4+2x2y2+32y2+x2−32x2+256=1156+x4+y4+2x2y2−68(x2+y2)
68x2−32x2+68y2+32y2=1156−256
36x2+100y2=900
98x2+25y2=225
( or )
x225+y29=1.