The correct options are
C 14
D 15
P(A∩B)=P(A)P(B)=120⇒P(B)=120P(A)P(¯A∩¯B)=35=1−P(A∪B)⇒35=1−P(A)−P(B)+P(A∩B)⇒35=1−P(A)−120P(A)+120⇒35=2120−P(A)−120P(A)⇒12−2120=−P(A)−120P(A)
Let P(A)=x
⇒−920=−20x2−120x⇒20x2−9x+1=0⇒(4x−1)(5x−1)=0⇒x=14, 15i.e. P(A)=14, P(A)=15