The correct option is A (512,34)
We have P(A)=13 and P(A∩B)=34
∴P(A∪B)=P(A)+P(B)−P(A∩B)
⇒34=13+P(B)−P(A∩B)⇒512=P(B)−P(A∩B)
⇒P(B)=512+P(A∩B)⇒P(B)≥512 ...(1)
Again ⇒P(B)=512+P(A∩B)⇒P(B)≤512+P(A)=512+13=34 ...(2)
[∵P(A∩B)≤P(A)]
From (1) and (2), we obtain 512≤P(B)≤34.
Hence x=512 and y=34