It is given that P(A)=0.54,P(B)=0.69,P(A∩B)=0.35
(i) We know that P (A∪B)=P(A)+P(B)−P(A∩B)
∴P(A∪B)=0.54+0.69−0.35=0.88
(ii) A′∩B′=(A∪B)′, [by De Morgan's law ]
∴P(A′∩B′)=P(A∪B)′=1−P(A∪B)=1−0.88=0.12
(iii) P(A∩B)′=P(A)−P(A∩B)=0.54−0.35=0.19
(iv)We know that, P(B∩A′)=P(B)−P(A∩B)
∴P(B∩A′)=0.69−0.35=0.34