The correct option is D q=4
Given n(A)=p;n(B)=q
Now, Cardianality of power set of any set X having x elements is given as:
n(X)=x
⇒n(P(A))=2p;n(P(B))=2q
It is given, that 2p=48+2q
⇒2p−2q=48
⇒2q(2p2q−1)=48
⇒2q(2p−q−1)=48
⇒2q(2p−q−1)=24(22−1)
Comparing, we get:
q=4;p=q+2=6