Draw the perpendicular PM
Then coordinates of M are (3+52,2+12)
AB=a=√(5−3)2+(1−2)2=√5
In △PMB
PM2+MB2=BP2h2+(a2)2=a2⇒h=√3a2h=√3×√52=√152
⇒M(4,32)
Slope of AB=1−25−3=−12
⇒ Slope of PM=2
tanθ=2
secθ=√1+tan2θ=√1+4=√5
⇒cosθ=1√5
tanθ=sinθcosθ
⇒sinθ=2√5
x−4cosθ=y−32sinθ=h⇒x=hcosθ+4=√152×1√5+4=√32+4y=hsinθ+32=√152×2√5+32=√3+32
So, the coordinates of P are (√32+4,√3+32)
As the triangle is equilateral so the ortho-centre of triangle will be same as centroid. So the ortho-centre of the △APB is
⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝(3+5+√32+4)3,(2+1+√3+32)3⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠(4+√36,32+√33)