A and B being the fixed points (a,0) and (−a,0) respectively, obtain the equations giving the locus of P, when PA2−PB2= a constant quantity =2k2
Open in App
Solution
A(a,0)B(−a,0)
Let the point P be (p,q) PA=√(p−a)2+(q−0)2PA2=(p−a)2+(q)2PB=√(p−a)2+(q−0)2PB2=(p+a)2+(q)2PA2−PB2=(p−a)2+(q)2−((p+a)2+(q)2)2k2=p2+a2−2ap+q2−p2−a2−2ap−q2−4ap=2k22ap+k2=0