The correct options are
A b+c−aa,c+a−bb,a+b−cc are in A.P
B b+ca,c+ab,a+bc are in A.P.
D a−bb−c=ac
a, b, c are in H.P.
⇒1a,1b,1c are in A.P
(A) a+b+ca, a+b+cb, a+b+cc are in A.P
⇒a+b+ca−2, a+b+cb−2, a+b+cc−2 are also in A.P
⇒b+c−aa,c+a−bb,a+b−cc are in A.P
(B) Similarly, a+b+ca−1,a+b+cb−1,a+b+cc−1 are in A.P
⇒b+ca,c+ab,a+bc are in A.P.
(C) 2b=1a+1c≥2√ac⇒√ac≥b
⇒a5+c5≥2(ac)52≥2b5
(D) 2b=1a+1c
⇒2ac=ab+bc
⇒a−bb−c=ac