Ifa,bandc are different positive real numbers ,then [a+b+c]1a+1b+1c is
<9
>9
>0
>24
Explanation for the correct option:
Applying AM-GM inequality:
[a+b+c]1a+1b+1c
∵AM>GM
⇒[a+b+c]3>(abc)13
⇒ [a+b+c]>3(abc)13 — (1)
Similarly, 1a+1b+1c3>1a1b1c13
⇒ 1a+1b+1c>31abc13 — (2)
Multiply equation (1) and (2),
⇒[a+b+c]1a+1b+1c>9
Hence, option ‘B’ is correct.
Name the property where a,bandc
a+b=b+a:
Find the value of x so that; (i) (34)2x+1=((34)3)3(ii) (25)3×(25)6=(25)3x(iii) (−15)20÷(−15)15=(−15)5x(iv) 116×(12)2=(12)3(x−2)