A, B, C and D are four points such that −−→AB=m(2^i−6^j+2^k), −−→BC=(^i−2^j) and −−→CD=n(−6^i+15^j−3^k). If ^CD intersects −−→AB at some point E, then which of the following option(s) is/are correct?
m≥12
n≥13
Let −−→EB=p(−−→AB) and (−−→CE)=q(−−→CD)
Then 0<p,q≤1
Since −−→EB+−−→BC+−−→CE=0
⇒pm(2^i−6j+2^k)+(^i−2j)+qn(−6^i+15j−3^k)=0
⇒(2pm+1−6qn)^i+(−6pm−2+15qn)^j+(2pm−3qn)^k=0
⇒2pm−6qn+1=0,−6pm−2+15qn=0,2pm−3qn=0
p=12m,q=13n
∴0<12m≤1 and 0<13n≤1
⇒m≥12,n≥13