The event of atleast 2 hitting the balloon can be denoted as
(A,B,¯C)∪(A,¯B,C)∪(¯A,B,C)∪(A,B,C)
Let the events below be denoted as
(A,B,¯C)≡X
(A,¯B,C)≡Y
(¯A,B,C)≡Z
(A,B,C)≡T.
The events X,Y,Z,T are mutually exclusive. Therefore, the probability
P(X∪Y∪Z∪T)=P(X)+P(Y)+P(Z)+P(T)
=P(A,B,¯C)+P(A,¯B,C)+P(¯A,B,C)+P(A,B,C)
Thus, we have:
P(atleast 2 hitting the balloon) = P(A,B,¯C)+P(A,¯B,C)+P(¯A,B,C)+P(A,B,C)
Given that:
P(A)=45
⇒P(¯A)=1−45=15
P(¯B)=1−34=14
P(¯C)=1−23=13
The events A, B, C are independent. Hence,
P(A,B,C)=P(A)×P(B)×P(C)
=45×34×23=25
Similarly,
P(A,B,¯C)=P(A)×P(B)×P(¯C)
=45×34×13=15
P(A,¯B,C)=P(A)×P(¯B)×P(C)
=45×14×23=215
P(¯A,B,C)=P(¯A)×P(B)×P(C)
=15×34×23=110
The probability of atleast 2 of them hitting the balloon:
P(A,B,¯C)+P(A,¯B,C)+P(¯A,B,C)+P(A,B,C)
=25+15+215+110
=56