A, B, C are any points on the circle with centre O. m(arc BC) = 120∘ and m(arc AB) = 130∘.
Then, find m (arc ABC), m (arc ACB), and m (arc BAC).
[3 Marks]
Open in App
Solution
By property of sum of measure of arcs, we must have
m(arc ABC) = m(arc AB) + m(arc BC) ⟹ m(arc ABC) = 130∘ + 120∘
= 250∘ [1 Mark]
m(arc AC) = 360∘ - m(arc ABC) ⟹ m(arc AC) = 360∘ - 250∘
= 110∘
m(arc ACB) = m(arc AC) + m(arc BC) ⟹ m(arc ACB) = 110∘ + 120∘
= 230∘ [1 Mark]