ax2+bx+c=0 a,b,cϵN
(i) Roots distinct
D=b2−4ac>0 & −1<−b2a<0
⇒0<b2a<1
⇒b<2a
f(−1)>0
⇒a−b+c>0
⇒a+c>b
ac<b249
Using AM≥GM,
a+c≥2√ac
⇒b≥2b√49
⇒a≥1
a+c>b
⇒c>b−9
& b<2a {given}
⇒c>a,
⇒c>1
⇒cmin=2
Now, b2>4ac
⇒b2>24
b>2
⇒bmin=3
(ii) Roots may be equal
b2=4acb<2a
a≥1
b2=4ac
c>a
⎧⎪⎨⎪⎩amin=1bmin=2cmin=2⎫⎪⎬⎪⎭