wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A, B, C are the points representing the complex numbers z1,z2,z3 respectively on the complex plane and the circumcentre of the triangle ABC lies at the origin. If the altitude of the triangle through the vertex A meets the circumcircle again at P, then show that P represents the complex number z2z3z1.

Open in App
Solution

|z1|=|z2|=|z3|=|z|
z1¯¯¯¯¯z1=z2¯¯¯¯¯z2=z3¯¯¯¯¯z3=z¯¯¯z..........(1)
APBC

zz1¯¯¯z¯¯¯¯¯z1+z2z3¯¯¯¯¯z2¯¯¯¯¯z3=0

zz1z1¯¯¯¯¯z1z¯¯¯¯¯z1+z2z3z3¯¯¯¯¯z3z2¯¯¯¯¯z3=0 [From (1)]

z(zz1)z1¯¯¯¯¯z1z¯¯¯¯¯z1+z2(z2z3)z3¯¯¯¯¯z3z2¯¯¯¯¯z3=0

z(zz1)¯¯¯¯¯z1(z1z)+z2(z2z3)¯¯¯¯¯z3(z3z2)=0

z(z1z)¯¯¯¯¯z1(z1z)z2(z3z2)¯¯¯¯¯z3(z3z2)=0

z¯¯¯¯¯z1z2¯¯¯¯¯z3=0

z¯¯¯¯¯z1=z2¯¯¯¯¯z3

z=z2(¯¯¯¯¯z1¯¯¯¯¯z3)..........(2)

z1¯¯¯¯¯z1=z3¯¯¯¯¯z3

¯¯¯¯¯z1¯¯¯¯¯z3=z3z1

Putting in (2), we get

z=z2(z3z1) or z2z3z1

249591_130379_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon