We have,
a,b,cinH.P.
So,
1a,1b,1c......inanA.P ∴H.P.=1A.P.
1b=1a+1c2
⇒1b=a+c2ac
⇒b=2aca+c
Now,
b+ab−a+b+cb−c
⇒(b+a)(b−c)+(b+c)(b−a)(b−a)(b−c)
⇒b2+ab−bc−ac+b2+bc−ab−ac(b−a)(b−c)
⇒2b2−2ac(b−a)(b−c)
⇒22aca+c−2ac(2aca+c−a)(2aca+c−b)
⇒4ac−2a2c−2ac2a+c(2ac−a2−aca+c)(2ac−ab−bca+c)
⇒4ac−2a2c−2ac2a+c(2ac−a2−ac)(2ac−ab−bc)a+c
⇒4ac−2a2c−2ac2(ac−a2)(2ac−ab−bc)
⇒ac(4−2a−2c)a(c−a)(2ac−ab−bc)
⇒c(4−2a−2c)(c−a)(2ac−ab−bc)
Hence, this is the answer.