wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a -b-c2a2a1. ) 2b b-c-a 2b -(a+b+c)2c2c c-a-b(ii) z2y+z+2x2-2(x y+ z)z+x+2y

Open in App
Solution

(i)

The given left hand side determinant is,

Δ=| abc 2a 2a 2b bca 2b 2c 2c cab |

Apply row operation R 1 R 1 + R 2 + R 3 ,

Δ=| abc+2b+2c 2a+bca+2c 2a+2b+cab 2b bca 2b 2c 2c cab | =| a+b+c a+b+c a+b+c 2b bca 2b 2c 2c cab | =( a+b+c )| 1 1 1 2b bca 2b 2c 2c cab |

Apply column operation C 1 C 1 C 2 ,

Δ=( a+b+c )| 11 1 1 2b( bca ) bca 2b 2c2c 2c cab | =( a+b+c )| 0 1 1 b+c+a bca 2b 0 2c cab | = ( a+b+c ) 2 | 0 1 1 1 bca 2b 0 2c cab |

Apply column operation C 2 C 2 C 3 ,

Δ= ( a+b+c ) 2 | 0 11 1 1 bca2b 2b 0 2cc+a+b cab | = ( a+b+c ) 2 | 0 0 1 1 ( a+b+c ) 2b 0 a+b+c cab | = ( a+b+c ) 3 | 0 0 1 1 1 2b 0 1 cab |

Expand along R 1 ,

Δ= ( a+b+c ) 3 [ 00+1 ] = ( a+b+c ) 3

Thus, the value of the left hand side of the determinant is equal to the right hand side.

(ii)

The given left hand side determinant is,

Δ=| x+y+2z x y z y+z+2x y z x z+x+2y |

Apply column operation C 1 C 1 + C 2 + C 3 ,

Δ=| x+y+2z+x+y x y z+y+z+2x+y y+z+2x y z+x+z+x+2y x z+x+2y | =| 2( x+y+z ) x y 2( x+y+z ) y+z+2x y 2( x+y+z ) x z+x+2y | =2( x+y+z )| 1 x y 1 y+z+2x y 1 x z+x+2y |

Apply row operation R 2 R 2 R 3 ,

Δ=2( x+y+z )| 1 x y 11 y+z+2xx yzx2y 1 x z+x+2y | =2( x+y+z )| 1 x y 0 y+z+x ( x+y+z ) 1 x z+x+2y | =2 ( x+y+z ) 2 | 1 x y 0 1 1 1 x z+x+2y |

Apply row operation R 3 R 3 R 1 ,

Δ=2 ( x+y+z ) 2 | 1 x y 0 1 1 11 xx z+x+2yy | =2 ( x+y+z ) 2 | 1 x y 0 1 1 0 0 x+y+z | =2 ( x+y+z ) 3 | 1 x y 0 1 1 0 0 1 |

Expand along R 3 ,

Δ=2 ( x+y+z ) 3 [ 00+1 ] =2 ( x+y+z ) 3

Thus, the value of left hand side of the determinant is equal to the right hand side.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon